線(xiàn)段|BC|=4,BC中點(diǎn)為M,點(diǎn)A與B,C兩點(diǎn)的距離之和為6,設(shè)|AM|=y,|AB|=x.
(1)求y=f(x)的函數(shù)表達(dá)式及函數(shù)的定義域;
(2)試求y的取值范圍.
【答案】分析:(1)先看A,B,C不共線(xiàn)時(shí),根據(jù)三角形中線(xiàn)的性質(zhì)可求得2(|BM|2+|AM|2)=|AB|2+|AC|2,進(jìn)而利用兩點(diǎn)間的距離公式代入等式中求得x和y的關(guān)系式,再看A,B,C三點(diǎn)共線(xiàn)時(shí),|AB|+|AC|=6>|BC|推斷出A在線(xiàn)段BC外側(cè),利用|6-x-x|=4求得x的值,代入2(|BM|2+|AM|2)=|AB|2+|AC|2也符合,最后綜合可得函數(shù)f(x)的解析式,利用根號(hào)大于等于0的性質(zhì)求得x的范圍即函數(shù)的定義域.
(2)把(1)函數(shù)的解析式,利用二次函數(shù)的性質(zhì)和函數(shù)的定義求得y的最大和最小值.
解答:解:(1)當(dāng)A、B、C三點(diǎn)不共線(xiàn)時(shí),由三角形中線(xiàn)性質(zhì)知2(|BM|2+|AM|2)=;
當(dāng)A,B,C三點(diǎn)共線(xiàn)時(shí),由|AB|+|AC|=6>|BC|=4⇒A在線(xiàn)段BC外側(cè),
由|6-x-x|=4⇒x=1或x=5,因此,當(dāng)x=1或x=5時(shí),有|AB|+|AC|=6,
同時(shí)也滿(mǎn)足:2(|BM|2+|AM|2)=|AB|2+|AC|2.當(dāng)A、B、C不共線(xiàn)時(shí),||AB|-|AC||<|BC|=4定義域?yàn)閇1,5].
(2)由且x∈[1,5],
∴當(dāng)x=3時(shí),.當(dāng)x=1或5時(shí),
∴y的取值范圍為[,3].
點(diǎn)評(píng):本題主要考查了兩點(diǎn)間的距離公式的應(yīng)用,函數(shù)思想的運(yùn)用,二次函數(shù)的性質(zhì)以及分類(lèi)討論的思想的運(yùn)用.綜合考查了學(xué)生分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

線(xiàn)段|BC|=4,BC中點(diǎn)為M,點(diǎn)A與B,C兩點(diǎn)的距離之和為6,設(shè)|AM|=y,|AB|=x.
(1)求y=f(x)的函數(shù)表達(dá)式及函數(shù)的定義域;
(2)試求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

線(xiàn)段|BC|=4,BC中點(diǎn)為M,點(diǎn)A與B,C兩點(diǎn)的距離之和為6,設(shè)|AM|=y,|AB|=x.
(Ⅰ)求y=f(x)的函數(shù)表達(dá)式及函數(shù)的定義域;
(Ⅱ)設(shè)d=y+x-1,試求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省五校高三(上)第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

線(xiàn)段|BC|=4,BC中點(diǎn)為M,點(diǎn)A與B,C兩點(diǎn)的距離之和為6,設(shè)|AM|=y,|AB|=x.
(Ⅰ)求y=f(x)的函數(shù)表達(dá)式及函數(shù)的定義域;
(Ⅱ)設(shè)d=y+x-1,試求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省五校高三(上)第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

線(xiàn)段|BC|=4,BC中點(diǎn)為M,點(diǎn)A與B,C兩點(diǎn)的距離之和為6,設(shè)|AM|=y,|AB|=x.
(Ⅰ)求y=f(x)的函數(shù)表達(dá)式及函數(shù)的定義域;
(Ⅱ)設(shè)d=y+x-1,試求d的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案