【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個(gè)階段后得到銷售單價(jià)和月銷售量之間的一組數(shù)據(jù),如下表所示:

銷售單價(jià)(元)

9

9.5

10

10.5

11

月銷售量(萬(wàn)件)

11

10

8

6

5

(I)根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出關(guān)于的回歸直線方程,并預(yù)測(cè)月銷售量不低于12萬(wàn)件時(shí)銷售單價(jià)的最大值;

(II)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬(wàn)件,則生產(chǎn)企業(yè)獎(jiǎng)勵(lì)網(wǎng)店1萬(wàn)元;若月銷售量不低于8萬(wàn)件且不足10萬(wàn)件,則生產(chǎn)企業(yè)獎(jiǎng)勵(lì)網(wǎng)店5000元;若月銷售量低于8萬(wàn)件,則沒(méi)有獎(jiǎng)勵(lì). 現(xiàn)用樣本估計(jì)總體,從上述5個(gè)銷售單價(jià)中任選2個(gè)銷售單價(jià),求抽到的產(chǎn)品含有月銷售量不低于10萬(wàn)件的概率.

參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為. 參考數(shù)據(jù):

【答案】(I), 8.75元;(II).

【解析】

(I) 求得、的平均數(shù),根據(jù)公式求得,即可得回歸方程,進(jìn)而預(yù)測(cè)銷售量不低于12萬(wàn)件時(shí)銷售單價(jià)的最大值;

(II) 根據(jù)古典概型概率,列出滿足條件的組合,即可求得滿足月銷售量不低于10萬(wàn)件的概率。

(I)

所以關(guān)于的回歸直線方程為

要使月銷售量不低于12萬(wàn)件,則有,解得

所以銷售單價(jià)的最大值為8.75元 .

(II)由題意可得,銷售單價(jià)共有5個(gè),其中使得月銷售量不低于10萬(wàn)件的有2個(gè)記為,月銷售量不低于8萬(wàn)件且不足10萬(wàn)件的有1個(gè)記為,月銷售量低于8萬(wàn)件的有2個(gè)記為.從中抽2個(gè)其有10種,分別是,指定事件數(shù)有7種

所求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,且

I)求數(shù)列,的通項(xiàng)公式;

II)令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,河北等8省公布了高考改革綜合方案將采取模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2.為了更好進(jìn)行生涯規(guī)劃,張明同學(xué)對(duì)高一一年來(lái)的七次考試成績(jī)進(jìn)行統(tǒng)計(jì)分析,其中物理、歷史成績(jī)的莖葉圖如圖所示.

1)若張明同學(xué)隨機(jī)選擇3門功課,求他選到物理政治兩門功課的概率;

2)試根據(jù)莖葉圖分析張明同學(xué)應(yīng)在物理和歷史中選擇哪個(gè)學(xué)科?并闡述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線lt為參數(shù))與曲線Cθ為參數(shù))相交于不同的兩點(diǎn)A,B

)若α,求線段AB中點(diǎn)M的坐標(biāo);

)若|PA·PB|=|OP,其中P2),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線和拋物線相交于不同兩點(diǎn)A,B.

I)求實(shí)數(shù)的取值范圍;

)設(shè)AB的中點(diǎn)為M,拋物線C的焦點(diǎn)為F.以MF為直徑的圓與直線l相交于另一點(diǎn)N,且滿足,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)如圖,在多面體中,底面是邊長(zhǎng)為的的菱形, ,四邊形是矩形,平面平面, , 分別是的中點(diǎn).

)求證:平面平面;

)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Mx,y)滿足

1)求點(diǎn)M的軌跡E的方程;

2)設(shè)過(guò)點(diǎn)N(﹣1,0)的直線l與曲線E交于A,B兩點(diǎn),若OAB的面積為O為坐標(biāo)原點(diǎn)).求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體中,點(diǎn)分別是棱,上的動(dòng)點(diǎn),,直線與平面所成的角為,則△的面積的最小值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,,點(diǎn)的中點(diǎn).

求證:平面;

若直線與平面所成角為,求二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案