【題目】已知圓的方程為.
(I)若點(diǎn)在圓的外部,求的取值范圍;
(II)當(dāng)時(shí),是否存在斜率為的直線,使以被圓截得的弦為直徑所作的圓過原點(diǎn)?若存在,求出的方程;若不存在,說明理由.
【答案】(I);(II)或.
【解析】試題分析:(1)由題意,點(diǎn)在圓的外部,可得,即可求解實(shí)數(shù)的取值范圍;
(2)依題意假設(shè)直線的方程為,又是弦的中點(diǎn),得的方程,聯(lián)立的方程可解得的坐標(biāo)為,再由原點(diǎn)在以為直徑的圓上,得,即可列出方程求解的值得出直線方程.
試題解析:(I)∵,
∴整理得:.
由得:.
∵點(diǎn)在該圓的外部,∴.
∴.∴或.
又∵,∴的取值范圍是.
(II)當(dāng)時(shí),圓的方程為.
如圖:依題意假設(shè)直線存在,其方程為,
是弦的中點(diǎn).
∴的方程為.
聯(lián)立的方程可解得的坐標(biāo)為.………7分
∵原點(diǎn)在以為直徑的圓上,∴.
∴.
化簡(jiǎn)得:,解得:或.
∴的方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,
①若f(a)=14,求a的值
②在平面直角坐標(biāo)系中,作出函數(shù)y=f(x)的草圖.(需標(biāo)注函數(shù)圖象與坐標(biāo)軸交點(diǎn)處所表示的實(shí)數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位決定投資3200元建一倉庫(長(zhǎng)方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長(zhǎng)造價(jià)40元,兩側(cè)墻砌磚,每米長(zhǎng)造價(jià)45元,頂部每平方米造價(jià)20元。
(1)設(shè)鐵柵長(zhǎng)為米,一堵磚墻長(zhǎng)為米,求函數(shù)的解析式;
(2)為使倉庫總面積達(dá)到最大,正面鐵柵應(yīng)設(shè)計(jì)為多長(zhǎng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若存在兩個(gè)極值點(diǎn),求證:無論實(shí)數(shù)取什么值都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的最小值為,且.
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;
(2)請(qǐng)根據(jù)3月2日至3月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程.
(參考公式:回歸直線方程為,其中, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某電子元件進(jìn)行壽命追蹤調(diào)查,所得情況如右頻率分布直方圖.
(1)圖中縱坐標(biāo)處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取個(gè)元件,壽命為之間的應(yīng)抽取幾個(gè);
(3)從(2)中抽出的壽命落在之間的元件中任取個(gè)元件,求事件“恰好有一個(gè)壽命為,一個(gè)壽命為”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年天貓五一活動(dòng)結(jié)束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動(dòng)中消費(fèi)超過3000元的人群的年齡狀況,隨機(jī)在當(dāng)?shù)叵M(fèi)超過3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, , 對(duì)應(yīng)的小矩形的面積分別是,且.
(1)以頻率作為概率,若該地區(qū)五一消費(fèi)超過3000元的有30000人,試估計(jì)該地區(qū)在五一活動(dòng)中消費(fèi)超過3000元且年齡在的人數(shù);
(2)計(jì)算在五一活動(dòng)中消費(fèi)超過3000元的消費(fèi)者的平均年齡;
(3)若按照分層抽樣,從年齡在, 的人群中共抽取7人,再從這7人中隨機(jī)抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司過去五個(gè)月的廣告費(fèi)支出與銷售額(單位:萬元)之間有下列對(duì)應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
40 | 60 | 50 | 70 |
工作人員不慎將表格中的第一個(gè)數(shù)據(jù)丟失.已知對(duì)呈線性相關(guān)關(guān)系,且回歸方程為,則下列說法:①銷售額與廣告費(fèi)支出正相關(guān);②丟失的數(shù)據(jù)(表中處)為30;③該公司廣告費(fèi)支出每增加1萬元,銷售額一定增加萬元;④若該公司下月廣告投入8萬元,則銷售
額為70萬元.其中,正確說法有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com