(本小題滿分14分)
如圖所示,在長方體中,AB=AD=1,AA1=2,M是棱CC1的中點
(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;
(Ⅱ)證明:平面ABM⊥平面A1B1M1
科目:高中數(shù)學 來源: 題型:解答題
如圖,在正三棱柱ABC—A1B1C1中,底面邊長及側棱長均為2,D是棱AB的中點,
(1)求證;
(2)求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中點,N是BC1的中點.
(1)求證:MN//平面A1B1C1;
(2)求二面角B-C1M-C的平面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分)在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分別是邊A1A2,A2A3上的一點,沿線段BC,CD,DB分別將△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一點A。
(Ⅰ)求證:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知四棱錐中,側棱平面,底面是平行四邊形,,,,分別是的中點.
(1)求證:平面
(2)當平面與底面所成二面角為時,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
如圖,BC=4,原點O是BC的中點,點A(,,0),點D在平面yOz上,且∠BDC=90°,∠DCB=30°,則AD的長度為( )
A. |
B. |
C. |
D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com