5.從[0,2]中任取一個(gè)數(shù)x,從[0,3]中任取一個(gè)數(shù)y,則使x2+y2≤4的概率為( 。
A.$\frac{1}{2}$B.$\frac{π}{9}$C.$\frac{π}{3}$D.$\frac{π}{6}$

分析 在平面直角坐標(biāo)系中作出圖形,則x∈[0,2],y∈[0,3]的平面區(qū)域?yàn)榫匦,符合條件x2+y2≤4的區(qū)域?yàn)橐栽c(diǎn)為圓心,2為半徑的扇形內(nèi)部,則扇形面積與矩形面積的比為概率

解答 解:在平面直角坐標(biāo)系中作出圖形,如圖所示,
則x∈[0,2],y∈[0,3]的平面區(qū)域?yàn)榫匦蜲ABC,
符合條件x2+y2≤4的區(qū)域?yàn)橐栽c(diǎn)為圓心,
2為半徑的扇形OAD內(nèi)部,
∴P(x2+y2≤4)=$\frac{{S}_{扇形}}{{S}_{矩形}}$=$\frac{\frac{1}{4}π×{2}^{2}}{2×3}$=$\frac{π}{6}$;
故選D.

點(diǎn)評(píng) 本題考查了幾何概型的概率計(jì)算,正確作出幾何圖形是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某中學(xué)為豐富教職工生活,在元旦期間舉辦趣味投籃比賽,設(shè)置A,B兩個(gè)投籃位置,在A點(diǎn)投中一球得1分,在B點(diǎn)投中一球得2分,規(guī)則是:每人按先A后B的順序各投籃一次(計(jì)為投籃兩次),教師甲在A點(diǎn)和B點(diǎn)投中的概率分別為$\frac{1}{2}$和$\frac{1}{3}$,且在A,B兩點(diǎn)投中與否相互獨(dú)立
(1)若教師甲投籃兩次,求教師甲投籃得分0分的概率
(2)若教師乙與教師甲在A,B投中的概率相同,兩人按規(guī)則投籃兩次,求甲得分比乙高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知關(guān)于x的不等式x2-4ax+3a2<0(a>0)的解集為(x1,x2),則${x_1}+{x_2}+\frac{a}{{{x_1}{x_2}}}$的最小值是( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$-\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.甲7:00~8:00到,乙7:20~7:50到,先到者等候另一人10分鐘,過(guò)時(shí)離去.則 求兩人會(huì)面的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow{m}$=(sinx,$\frac{3}{2}$),$\overrightarrow{n}$=($\sqrt{3}$Acosx,$\frac{A}{3}$cos2x)(A>0),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最大值為6,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)y=ln(ex-x+a)(e為自然對(duì)數(shù)的底數(shù))的值域是正實(shí)數(shù)集R+,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1)B.(0,1]C.(-1,0]D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,在?ABCD中,M,N分別為AB,AD上的點(diǎn),且$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AD}$,連接AC,MN交于P點(diǎn),若$\overrightarrow{AP}$=λ$\overrightarrow{AC}$,則λ的值為( 。
A.$\frac{3}{5}$B.$\frac{3}{7}$C.$\frac{6}{13}$D.$\frac{6}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù) f(x)=log2(1+x)-log2(1-x).
(1)求 f(x)的定義域;
(2)判斷 f(x)的奇偶性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,則f(2016)=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案