(本小題共14分)
矩形的兩條對角線相交于點(diǎn),邊所在直線的方程為,點(diǎn)在邊所在直線上.
(I)求邊所在直線的方程;
(II)求矩形外接圓的方程;
(III)若動圓過點(diǎn),且與矩形的外接圓外切,求動圓的圓心的軌跡方程.
(I)邊所在直線的方程為
(II)矩形外接圓的方程為
(III)動圓的圓心的軌跡方程為
【解析】解:(I)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051810415951565809/SYS201205181043019375430661_DA.files/image007.png">邊所在直線的方程為,且與垂直,所以直線的斜率為.
又因?yàn)辄c(diǎn)在直線上,
所以邊所在直線的方程為.
.
(II)由解得點(diǎn)的坐標(biāo)為,
因?yàn)榫匦?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051810415951565809/SYS201205181043019375430661_DA.files/image003.png">兩條對角線的交點(diǎn)為.
所以為矩形外接圓的圓心.
又.
從而矩形外接圓的方程為.
(III)因?yàn)閯訄A過點(diǎn),所以是該圓的半徑,又因?yàn)閯訄A與圓外切,
所以,
即.
故點(diǎn)的軌跡是以為焦點(diǎn),實(shí)軸長為的雙曲線的左支.
因?yàn)閷?shí)半軸長,半焦距.
所以虛半軸長.
從而動圓的圓心的軌跡方程為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
數(shù)列的前n項(xiàng)和為,點(diǎn)在直線
上.
(I)求證:數(shù)列是等差數(shù)列;
(II)若數(shù)列滿足,求數(shù)列的前n項(xiàng)和
(III)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上。
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時,求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線是圓上動點(diǎn)處的切線,與雙曲線交
于不同的兩點(diǎn),證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EFPB交PB于點(diǎn)F
⑴求證:PA//平面EDB
⑵求證:PB平面EFD
⑶求二面角C-PB-D的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題
(本小題共14分)
正方體的棱長為,是與的交點(diǎn),為的中點(diǎn).
(Ⅰ)求證:直線∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com