【題目】某地政府?dāng)M在該地一水庫上建造一座水電站,用泄流水量發(fā)電.下圖是根據(jù)該水庫歷年的日泄流量的水文資料畫成的日泄流量X(單位:萬立方米)的頻率分布直方圖(不完整),已知,歷年中日泄流量在區(qū)間[30,60)
的年平均天數(shù)為156,一年按364天計(jì).
(Ⅰ)請(qǐng)把頻率分布直方圖補(bǔ)充完整;
(Ⅱ)該水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每30萬立方米的日泄流量才夠運(yùn)行一臺(tái)發(fā)電機(jī),如時(shí)才夠運(yùn)行兩臺(tái)發(fā)電機(jī),若運(yùn)行一臺(tái)發(fā)電機(jī),每天可獲利潤為4000元,若不運(yùn)行,則該臺(tái)發(fā)電機(jī)每天虧損500元,以各段的頻率作為相應(yīng)段的概率,以水電站日利潤的期望值為決策依據(jù),問:為使水電站日利潤的期望值最大,該水電站應(yīng)安裝多少臺(tái)發(fā)電機(jī)?
【答案】(Ⅰ)見解析;(Ⅱ)要使水電站日利潤的期望值最大,該水電站應(yīng)安裝3臺(tái)發(fā)電機(jī).
【解析】試題分析:(Ⅰ)可利用頻率分布直方圖的性質(zhì),補(bǔ)全圖像;
(Ⅱ)分別計(jì)算安裝1臺(tái),2臺(tái),3臺(tái)的日利潤的期望值,然后進(jìn)行比較.
試題解析:
(Ⅰ)在區(qū)間[30,60)的頻率為
,
設(shè)在區(qū)間[0,30)上, ,
則,
解得,
補(bǔ)充頻率分布直方圖如圖;
(Ⅱ)記水電站日利潤為Y元.由(Ⅰ)知:不能運(yùn)行發(fā)電機(jī)的概率為,恰好運(yùn)行一臺(tái)發(fā)電機(jī)的概率為,恰好運(yùn)行二臺(tái)發(fā)電機(jī)的概率為,恰好運(yùn)行三臺(tái)發(fā)電機(jī)的概率為,
①若安裝1臺(tái)發(fā)電機(jī),則Y的值為-500,4000,其分布列為
Y | -500 | 4000 |
P |
E(Y)=;
②若安裝2臺(tái)發(fā)電機(jī),則Y的值為-1000,3500,8000,其分布列為
Y | -1000 | 3500 | 8000 |
P |
E(Y)=;
③若安裝3臺(tái)發(fā)電機(jī),則Y的值為-1500,3000,7500,12000,其分布列為
Y | -1500 | 3000 | 7500 | 12000 |
P |
E(Y)=;
∵
∴要使水電站日利潤的期望值最大,該水電站應(yīng)安裝3臺(tái)發(fā)電機(jī).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若在上存在極值點(diǎn),求的取值范圍;
(2)設(shè), ,若存在最大值,記為,則當(dāng)時(shí), 是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究一種昆蟲的產(chǎn)卵數(shù)和溫度是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并作出了散點(diǎn)圖,發(fā)現(xiàn)樣本點(diǎn)并沒有分布在某個(gè)帶狀區(qū)域內(nèi),兩個(gè)變量并不呈線性相關(guān)關(guān)系,現(xiàn)分別用模型①:與模型②:作為產(chǎn)卵數(shù)和溫度的回歸方程來建立兩個(gè)變量之間的關(guān)系.
溫度 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
產(chǎn)卵數(shù)/個(gè) | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
400 | 484 | 576 | 676 | 784 | 900 | 1024 | |
1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
26 | 692 | 80 | 3.57 |
1157.54 | 0.43 | 0.32 | 0.00012 |
其中,
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .
(1)在答題卡中分別畫出關(guān)于的散點(diǎn)圖、關(guān)于的散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷哪一個(gè)模型更適宜作為回歸方程類型?(給出判斷即可,不必說明理由).
(2)根據(jù)表中數(shù)據(jù),分別建立兩個(gè)模型下建立關(guān)于的回歸方程;并在兩個(gè)模型下分別估計(jì)溫度為時(shí)的產(chǎn)卵數(shù).(與估計(jì)值均精確到小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù): , , )
(3)若模型①、②的相關(guān)指數(shù)計(jì)算得分分別為, ,請(qǐng)根據(jù)相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯(cuò)誤的是( )
A. 如果平面外的直線不平行于平面,則平面內(nèi)不存在與平行的直線
B. 如果平面平面,平面平面, ,那么直線平面
C. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
D. 一條直線與兩個(gè)平行平面中的一個(gè)平面相交,則必與另一個(gè)平面相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)在如圖所示的五面體中,面為直角梯形, ,平面平面, , 是邊長為2的正三角形.
(1)證明: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè),證明:當(dāng)時(shí), ;
(Ⅲ)設(shè)是的兩個(gè)零點(diǎn),證明 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在區(qū)間內(nèi)任取兩個(gè)實(shí)數(shù),且,若不等式恒成立,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次水下科研考察活動(dòng)中,需要潛水員潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)已往經(jīng)驗(yàn),潛水員下潛的平均速度為(米/單位時(shí)間),每單位時(shí)間的用氧量為(升),在水底作業(yè)10個(gè)單位時(shí)間,每單位時(shí)間用氧量為(升),返回水面的平均速度為(米/單位時(shí)間),每單位時(shí)間用氧量為(升),記該潛水員在此次考察活動(dòng)中的總用氧量為(升).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)若,求當(dāng)下潛速度取什么值時(shí),總用氧量最少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com