某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了5月1日至5月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日    期 5月1日 5月2日 5月3日 5月4日 5月5日
溫差x(°C) 10 12 11 13 8
發(fā)芽數(shù)y(顆) 23 25 30 26 16
(1)從5月1日至5月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率.
(2)根據(jù)5月2日至5月4日的數(shù)據(jù),利用相關(guān)系數(shù)r判斷y與x是否具有線性相關(guān)關(guān)系(參考數(shù)據(jù):|r|>0.75時,認為兩變量有很強的線性相關(guān);
7
=2.6458
分析:(1)設(shè)“m,n均不小于25”為事件A,用列舉法列舉m、n的取值情況,可得其基本事件的數(shù)目與件A包含的基本事件的數(shù)目,由等可能事件的概率公式,計算可得答案;
(2)首先計算可得
.
x
.
y
,將數(shù)據(jù)代入相關(guān)系數(shù)r的公式中計算可得r的值,進而比較|r|與0.75的大小,可得答案.
解答:解:(1)設(shè)“m,n均不小于25”為事件A,
m,n的取值情況有(23,25)(23,30)(26,26)(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),基本事件總數(shù)為10.
則事件A包含的基本事件為(25,30),(25,26),(30,26),有3個;
所以事件A的概率為 P(A)=
3
10
,
故事件“m,n均不小于25”的概率
3
10
;
(2)根據(jù)題意,易得
.
x
=
11+12+13
3
=12,
.
y
=
25+30+26
3
=27;
則r=
3
i=1
(xi-
.
x
)(yi-
.
y
)
3
i=1
(xi-
.
x
)2
3
i=1
(yi-
.
y
)2
=-
2
7
≈-0.756,
|r|>0.75,
則y與x線性相關(guān).
點評:本題考查等可能事件的概率計算與利用相關(guān)系數(shù)的計算及運用,注意相關(guān)系數(shù)r的計算公式即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日    期 3月1日 3月2日 3月3日 3月4日 3月5日
溫差x(°C) 10 11 13 12 8
發(fā)芽數(shù)y(顆) 23 25 30 26 16
(1)求這5天的平均發(fā)芽率;
(2)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m、n,用(m,n)的形式列出所有的基本事件[視(m,n)與(n,m)相同],并求滿足“
(8)25≤m≤30
(9)25≤n≤30(10)
”的事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料
日期 3月1日 3月2日 3月3日 3月4日 3月5日
溫差x(°C) 10 11 13 12 8
發(fā)芽數(shù)y(顆) 23 25 30 26 16
(I)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均小于25”的概率.
(II)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
;
(III)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(II)所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日    期

3月1日

3月2日

3月3日

3月4日

3月5日

溫差(°C)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

(Ⅰ)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“m ,n均不小于25”的概率.

(Ⅱ)若選取的是3月1日與3月5日的兩組數(shù)據(jù),請根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(Ⅱ)中所得的線性回歸方程是否可靠?

(參考公式:回歸直線的方程是,其中,)

查看答案和解析>>

同步練習(xí)冊答案