對(duì)于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(Ⅰ)已知數(shù)列{an}的通項(xiàng)公式an=
5
2
n2-
13
2
n(n∈N*),試證明{△an}是等差數(shù)列;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,且滿足△2an-an+1+an=-2n(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,記bn=
a1(n=1)
2n-1
an
(n≥2,n∈N*)
,求證:b1+
b2
2
+…+
bn
n
17
12
分析:(Ⅰ)根據(jù)題意:△an=an+1-an=(n+1)2-(n+1)-n2+n=5n-4,所以△an+1-△an=6.由此能夠證明{△an}是等差數(shù)列.
(Ⅱ)由△2an-△an+1+an=-2n,知△an+1-△an-△an+1+an=-2n,所以△an-an=2n.由此入手能夠求出數(shù)列{an}的通項(xiàng)公式.
(Ⅲ)由an=n•2n-1,bn=
a1(n=1)
2n-1
an
(n≥2,n∈ N*)
=
1(n=1)
2n-1
an+1-an
(n≥2,n∈N*)
=
1(n=1)
1
n+2
(n≥2,n∈N*)
,當(dāng)n≥2,n∈N*時(shí),
bn
n
=
1
n(n+2)
=
1
2
1
n
-
1
n+2
),由此入手,能夠證明b1+
b2
2
+…+
bn
n
17
12
解答:解:(Ⅰ)根據(jù)題意:△an=an+1-an=(n+1)2-(n+1)-n2+n=5n-4 (2分)
∴△an+1-△an=6.
∴數(shù)列{Dan}是首項(xiàng)為1,公差為5的等差數(shù)列.(3分)
(Ⅱ)由△2an-△an+1+an=-2n,∴△an+1-△an-△an+1+an=-2n,?△an-an=2n.(5分)
而△an=an+1-an,∴an+1-2an=2n,∴
an+1
2n+1
-
an
2n
=
1
2
,(6分)
∴數(shù)列{
an
2n
}構(gòu)成以
1
2
為首項(xiàng),
1
2
為公差的等差數(shù)列,
an
2n
=
n
2
?an=n•2n-1.(7分)
(Ⅲ)由(Ⅱ)知an=n•2n-1
∴bn=
a1(n=1)
2n-1
an
(n≥2,n∈ N*)
=
1(n=1)
2n-1
an+1-an
(n≥2,n∈N*)
=
1(n=1)
1
n+2
(n≥2,n∈N*)
(9分)
∴當(dāng)n≥2,n∈N*時(shí)
bn
n
=
1
n(n+2)
=
1
2
1
n
-
1
n+2
),
∴b1+
b2
2
+…+
bn
n
=1+[(
1
2
-
1
4
)+(
1
3
-
1
5
)+(
1
4
-
1
6
)+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]
=1+
1
2
1
2
+
1
3
-
1
n+1
-
1
n+2
)<1+
1
2
1
2
+
1
3
)=
17
12

當(dāng)n=1時(shí),b1=1<
17
12
,顯然成立.
∴b1+
b2
2
+…+
bn
n
17
12
.(12分)
點(diǎn)評(píng):第(Ⅰ)題考查等差數(shù)列的證明,解題時(shí)要注意等差數(shù)列性質(zhì)的合理運(yùn)用;第(Ⅱ)題考查數(shù)列通項(xiàng)公式的求解方法,解題時(shí)要注意構(gòu)造法的合理運(yùn)用;第(Ⅲ)題考查數(shù)列前n項(xiàng)和的證明,解題時(shí)要注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);類似的,規(guī)定{△2an}為數(shù)列{an}的二階差分?jǐn)?shù)列,其中△2an=△an+1-△an(n∈N*).
(Ⅰ)已知數(shù)列{an}的通項(xiàng)公式an=3n2-5n(n∈N*),試證明{△an}是等差數(shù)列;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,且滿足△2an-△an+1+an=-2n(n∈N*),令bn=
an
2n
,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,記cn=
a1(n=1)
2n-1
△an
(n≥2,n∈N*
,求證:c1+
c2
2
+…+
cn
n
17
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(Ⅰ)已知數(shù)列{an}的通項(xiàng)公式an=數(shù)學(xué)公式n2-數(shù)學(xué)公式n(n∈N*),試證明{△an}是等差數(shù)列;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,且滿足△2an-an+1+an=-2n(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,記bn=數(shù)學(xué)公式,求證:b1+數(shù)學(xué)公式+…+數(shù)學(xué)公式數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0117 期中題 題型:解答題

對(duì)于數(shù)列{an},規(guī)定數(shù)列{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定為{an}的k階差分?jǐn)?shù)列,其中,且。
(1)
(2)若數(shù)列的首項(xiàng),且滿足 ,求數(shù)列的通項(xiàng)公式;
(3)在(2)的條件下,判斷是否存在最小值,若存在求出其最小值,若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省眉山市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

對(duì)于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);類似的,規(guī)定{△2an}為數(shù)列{an}的二階差分?jǐn)?shù)列,其中△2an=△an+1-△an(n∈N*).
(Ⅰ)已知數(shù)列{an}的通項(xiàng)公式an=3n2-5n(n∈N*),試證明{△an}是等差數(shù)列;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,且滿足△2an-△an+1+an=-2n(n∈N*),令bn=,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,記cn=,求證:c1++…+

查看答案和解析>>

同步練習(xí)冊(cè)答案