精英家教網 > 高中數學 > 題目詳情

直線l過拋物線y2=2px(p>0)的焦點,且與拋物線交于A、B兩點,若線段AB的長是8,AB的中點到y(tǒng)軸的距離是2,則此拋物線方程是


  1. A.
    y2=12x
  2. B.
    y2=8x
  3. C.
    y2=6x
  4. D.
    y2=4x
B
分析:先設出A,B的坐標,根據拋物線的定義求得x1+x2+p=8,進而根據AB中點到y(tǒng)軸的距離求得p,則拋物線方程可得.
解答:設A(x1,y1),B(x2,y2),根據拋物線定義,x1+x2+p=8,
∵AB的中點到y(tǒng)軸的距離是2,
,
∴p=4;
∴拋物線方程為y2=8x
故選B
點評:本題主要考查了拋物線的標準方程.解題的關鍵是利用了拋物線的定義.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設斜率為2的直線l過拋物線y2=ax(a≠0)的焦點F,且和y軸交于點A,若△OAF(O為坐標原點)的面積為4,則拋物線方程為( 。
A、y2=±4xB、y2=4xC、y2=±8xD、y2=8x

查看答案和解析>>

科目:高中數學 來源: 題型:

已知斜率為2的直線l過拋物線y2=ax的焦點F,且與y軸相交于點A,若△OAF(O為坐標原點)的面積為4,則拋物線方程為( 。
A、y2=4xB、y2=8xC、y2=4x或y2=-4xD、y2=8x或y2=-8x

查看答案和解析>>

科目:高中數學 來源: 題型:

設斜率為k的直線l過拋物線y2=8x的焦點F,且和y軸交于點A,若△OAF (O為坐標原點)的面積為4,則實數k的值為( 。
A、±2B、±4C、2D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,直線l過拋物線y2=4x的焦點F交拋物線于A、B兩點.
(1)若|AB|=8,求直線l的斜率
(2)若|AF|=m,|BF|=n.求證
1
m
+
1
n
為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)直線l過拋物線y2=2px(p>0)的焦點,且與拋物線相交于A(x1,y1),B(x2,y2)兩點,證明:y1y2=-p2
(2)直線l過拋物線y2=2px(p>0)的焦點,且與拋物線相交于A(x1,y1),B(x2,y2)兩點,點C在拋物線的準線上,且BC∥x軸,證明:直線AC經過原點.

查看答案和解析>>

同步練習冊答案