【題目】已知函數(shù),當時,的極大值為;當時,有極小值。求:

1的值;

2)函數(shù)的極小值。

【答案】1a =-3,b =-9,c=2

2-25

【解析】

利用函數(shù)f(x)在x=x0取得極值的充要條件f(x0)=0f(x)在x=x0的左右附近符號相反即可得出a,b的值,再利用極大值即可得到c,從而得出答案.

(1)∵f(x) = x3+ ax2+bx + c ,∴f′ (x) = 3x2+2ax +b

x =- 1 時函數(shù)取得極大值7,當x = 3時取得極小值

∴x =- 1 x = 3是方程f′ (x)=0的兩根,有

, ∴f(x) = x3-3x2-9x+c.

(2)∵x = -1時,函數(shù)取極大值7,∴(-1)3–3(-1)2–9(-1)+c= 7,∴c=2.

此時函數(shù)f(x)的極小值為:f(3)= 33-3×32-9×3×2=-25.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】北方某市一次全市高中女生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市名高中女生的身高(單位: 服從正態(tài)分布.現(xiàn)從某高中女生中隨機抽取名測量身高,測量發(fā)現(xiàn)被測學生身高全部在之間現(xiàn)將測量結果按如下方式分成組:第,,,下圖是按上述分組方法得到的頻率分布直方圖.

(1)求這名女生身高不低于的人數(shù);

(2)在這名女生身高不低于的人中任意抽取,將該人中身高排名(從高到低)在全市前名的人數(shù)記為的數(shù)學期望.

參考數(shù)據(jù): , ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)求函數(shù)的單調(diào)減區(qū)間;

2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年春節(jié)期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.

方案一:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎機會.

①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學期望;

②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從一批蘋果中,隨機抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

1)根據(jù)頻數(shù)分布表計算蘋果的重量在的頻率;

2)用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?

3)在(2)中抽出的4個蘋果中,任取2個,寫出所有可能的結果,并求重量在中各有1個的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),當時,的極大值為;當時,有極小值。求:

1的值;

2)函數(shù)的極小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正數(shù)數(shù)列滿足.

1)求數(shù)列的通項公式;

2)若等比數(shù)列滿足,求的值用含n的式子表示;

3)若,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年元旦班級聯(lián)歡晚會上,某班在聯(lián)歡會上設計了一個摸球表演節(jié)目的游戲,在一個紙盒中裝有1個紅球,1個黃球,1個白球和1個黑球,這些球除顏色外完全相同,A同學不放回地每次摸出1個球,若摸到黑球則停止摸球,否則就要將紙盒中的球全部摸出才停止.規(guī)定摸到紅球表演兩個節(jié)目,摸到白球或黃球表演一個節(jié)目,摸到黑球不用表演節(jié)目.

(1)求A同學摸球三次后停止摸球的概率;

(2)記X為A同學摸球后表演節(jié)目的個數(shù),求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年,南昌市召開了全球VR產(chǎn)業(yè)大會,為了增強對青少年VR知識的普及,某中學舉行了一次普及VR知識講座,并從參加講座的男生中隨機抽取了50人,女生中隨機抽取了70人參加VR知識測試,成績分成優(yōu)秀和非優(yōu)秀兩類,統(tǒng)計兩類成績?nèi)藬?shù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

男生

a

35

50

女生

30

d

70

總計

45

75

120

(1)確定a,d的值;

(2)試判斷能否有90%的把握認為VR知識的測試成績優(yōu)秀與否與性別有關;

(3)為了宣傳普及VR知識,從該校測試成績獲得優(yōu)秀的同學中按性別采用分層抽樣的方法,隨機選出6名組成宣傳普及小組.現(xiàn)從這6人中隨機抽取2名到校外宣傳,求“到校外宣傳的2名同學中至少有1名是男生”的概率.

附:

P(K2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案