森林失火了,火正以的速度順風(fēng)蔓延,消防站接到報(bào)警后立即派消防員前去,在失火后到達(dá)現(xiàn)場(chǎng)開始救火,已知消防隊(duì)在現(xiàn)場(chǎng)每人每分鐘平均可滅火,所消耗的滅火材料、勞務(wù)津貼等費(fèi)用每人每分鐘元,另附加每次救火所損耗的車輛、器械和裝備等費(fèi)用平均每人元,而每燒毀森林的損失費(fèi)為元,設(shè)消防隊(duì)派了名消防員前去救火,從到達(dá)現(xiàn)場(chǎng)開始救火到火全部撲滅共耗時(shí)
(1)求出的關(guān)系式;
(2)問為何值時(shí),才能使總損失最。

(1)(2)

解析試題分析:解:(1)根據(jù)題意得   4分
(2)設(shè)總損失為,則
  8分
當(dāng),即時(shí),才能使總損失最小  12分
考點(diǎn):函數(shù)模型的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是得到函數(shù)關(guān)系式,借助于函數(shù)的性質(zhì)來求解最值,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某人2002年底花100萬元買了一套住房,其中首付30萬元,70萬元采用商業(yè)貸款.貸款的月利率為5‰,按復(fù)利計(jì)算,每月等額還貸一次,10年還清,并從貸款后的次月開始還貸.
(1)這個(gè)人每月應(yīng)還貸多少元?
(2)為了抑制高房?jī)r(jià),國(guó)家出臺(tái)“國(guó)五條”,要求賣房時(shí)按照差額的20%繳稅.如果這個(gè)人現(xiàn)在將住房150萬元賣出,并且差額稅由賣房人承擔(dān),問:賣房人將獲利約多少元?(參考數(shù)據(jù):(1+0.005)120≈1.8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù) 
(Ⅰ)若在點(diǎn)處的切線與軸和直線圍成的三角形面積等于,求的值;
(Ⅱ)當(dāng)時(shí),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,,是某地一個(gè)湖泊的兩條互相垂直的湖堤,線段和曲線段分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋上某點(diǎn)分別修建與平行的棧橋、,且以、為邊建一個(gè)跨越水面的三角形觀光平臺(tái).建立如圖2所示的直角坐標(biāo)系,測(cè)得線段的方程是,曲線段的方程是,設(shè)點(diǎn)的坐標(biāo)為,記.(題中所涉及的長(zhǎng)度單位均為米,棧橋和防波堤都不計(jì)寬度)

(1)求的取值范圍;
(2)試寫出三角形觀光平臺(tái)面積關(guān)于的函數(shù)解析式,并求出該面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若,函數(shù)是R上的奇函數(shù),當(dāng)時(shí),
(i)求實(shí)數(shù)的值;
(ii)當(dāng)時(shí),求的解析式;
(2)若方程的兩根中,一根屬于區(qū)間,另一根屬于區(qū)間,求實(shí)數(shù)
取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(Ⅰ)解方程:
(Ⅱ)設(shè),求函數(shù)在區(qū)間上的最大值的表達(dá)式;
(Ⅲ)若,,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為:已知甲、乙兩地相距100千米.
(1)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù).
(1)若,試判斷函數(shù)零點(diǎn)個(gè)數(shù);
(2)是否存在,使同時(shí)滿足以下條件
①對(duì)任意,且;
②對(duì)任意,都有。若存在,求出的值,若不存在,請(qǐng)說明理由。
(3)若對(duì)任意,,試證明存在,
使成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的最小值為1,且
(1)求的解析式;  
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)在區(qū)間上,的圖像恒在的圖像上方,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案