精英家教網(wǎng)如圖,已知橢圓
x24
+y2=1
的焦點(diǎn)為F1、F2,點(diǎn)P為橢圓上任意一點(diǎn),過(guò)F2作∠F1PF2的外角平分線的垂線,垂足為點(diǎn)Q,過(guò)點(diǎn)Q作y軸的垂線,垂足為N,線段QN的中點(diǎn)為M,則點(diǎn)M的軌跡方程為
 
分析:點(diǎn)F2關(guān)于∠F1PF2的外角平分線PQ的對(duì)稱點(diǎn)Q′在直線F1P的延長(zhǎng)線上,故|F1Q′|=|PF1|+|PF2|=2a(橢圓長(zhǎng)軸長(zhǎng)),又OQ是△F2F1Q′的中位線,故|OQ|=a,由此可以求點(diǎn)M的軌跡方程.
解答:解:點(diǎn)F2關(guān)于∠F1PF2的外角平分線PQ的對(duì)稱點(diǎn)Q′在直線F1P的延長(zhǎng)線上,故|F1Q′|=|PF1|+|PF2|=2a(橢圓長(zhǎng)軸長(zhǎng)),
又OQ是△F2F1Q′的中位線,故|OQ|=2,
設(shè)M(x,y),則Q(2x,y),
所以有4x2+y2=4,
故答案為
y2
4
+x2=1
點(diǎn)評(píng):本題主要應(yīng)用角分線的性質(zhì)解決問(wèn)題,從而轉(zhuǎn)化為利用橢圓的定義,同時(shí)解題中利用了代入法求軌跡方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓
x2
4
+
y2
4
3
=1
的弦PB過(guò)其中心O,點(diǎn)A是橢圓的右頂點(diǎn),滿足
PA
PB
=0
,|
PB
|=2|
PA
|

(Ⅰ)求點(diǎn)P的坐標(biāo);
(Ⅱ)若橢圓上存在兩點(diǎn)C、D(異于A、B兩點(diǎn)),且(
PC
|
PC
|
+
PD
|
PD
|
)•
OA
=0
,問(wèn)是否存在實(shí)數(shù)λ使得
AB
CD
,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓
x2
4
+y2=1
,弦AB所在直線方程為:x+2y-2=0,現(xiàn)隨機(jī)向橢圓內(nèi)丟一粒豆子,則豆子落在圖中陰影范圍內(nèi)的概率為
π-2
π-2

(橢圓的面積公式S=π•a•b,其中a是橢圓長(zhǎng)半軸長(zhǎng),b是橢圓短半軸長(zhǎng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武昌區(qū)模擬)如圖,已知橢圓
x2
4
+
y2
3
=1
的右焦點(diǎn)為F,過(guò)F的直線(非x軸)交橢圓于M、N兩點(diǎn),右準(zhǔn)線l交x軸于點(diǎn)K,左頂點(diǎn)為A.
(1)求證:KF平分∠MKN;
(2)直線AM、AN分別交準(zhǔn)線l于點(diǎn)P、Q,設(shè)直線MN的傾斜角為θ,試用θ表示線段PQ的長(zhǎng)度|PQ|,并求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•甘肅三模)如圖,已知橢圓
x2
4
+
y2
3
=1
的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)為G,AB的中垂線與x軸和y軸分別交于D,E兩點(diǎn).
(Ⅰ)若點(diǎn)G的橫坐標(biāo)為-
1
4
,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2.試問(wèn):是否存在直線AB,使得S1=S2?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案