【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

(Ⅰ)求,的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯誤的概率不超過的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中

【答案】(Ⅰ),;(Ⅱ)不能在犯錯誤的概率不超過的前提下,認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)

【解析】

(Ⅰ)根據(jù)頻數(shù)計算出月工資收入在(百元)內(nèi)的頻率,利用頻率總和為和頻率分布直方圖估計中位數(shù)的方法可構(gòu)造出關(guān)于的方程組,解方程組求得結(jié)果;(Ⅱ)根據(jù)題意得到列聯(lián)表,從而計算出,從而得到結(jié)論.

(Ⅰ)月工資收入在(百元)內(nèi)的人數(shù)為

月工資收入在(百元)內(nèi)的頻率為:;

由頻率分布直方圖得:

化簡得:……①

由中位數(shù)可得:

化簡得:……②

由①②解得:,

(Ⅱ)根據(jù)題意得到列聯(lián)表:

技術(shù)工

非技術(shù)工

總計

月工資不高于平均數(shù)

月工資高于平均數(shù)

總計

不能在犯錯誤的概率不超過的前提下,認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖幾何體,正方形和矩形所在平面互相垂直,,的中點,

(Ⅰ)求證:平面

(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南充高中扎實推進(jìn)陽光體育運動,積極引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時間,采用簡單隨機(jī)抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:

分組

男生人數(shù)

2

16

19

18

5

3

女生人數(shù)

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為鍛煉達(dá)人”.

1)將頻率視為概率,估計我校7000名學(xué)生中鍛煉達(dá)人有多少?

2)從這100名學(xué)生的鍛煉達(dá)人中按性別分層抽取5人參加某項體育活動.

①求男生和女生各抽取了多少人;

②若從這5人中隨機(jī)抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是由曲線確定的.

1)寫出函數(shù),并判斷該函數(shù)的奇偶性;

2)求函數(shù)的單調(diào)區(qū)間并證明其單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)分別求、的定義域,并求的值;

2)求的最小值并說明理由;

3)若,,是否存在滿足下列條件的正數(shù),使得對于任意的正數(shù),、、都可以成為某個三角形三邊的長?若存在,則求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)若函數(shù)fx)在處有極值,求函數(shù)fx)的最大值;

2)是否存在實數(shù)b,使得關(guān)于x的不等式上恒成立?若存在,求出b的取值范圍;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時,對于一切,函數(shù)在區(qū)間內(nèi)總存在唯一零點,求的取值范圍;

2)當(dāng)時,數(shù)列的前項和,若是單調(diào)遞增數(shù)列,求的取值范圍;

3)當(dāng),時,函數(shù)在區(qū)間內(nèi)的零點為,判斷數(shù)列、、、、的增減性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是橢圓的兩個焦點,是橢圓上一點,當(dāng)時,有.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)過橢圓右焦點的動直線與橢圓交于兩點,試問:在鈾上是否存在與不重合的定點,使得恒成立?

查看答案和解析>>

同步練習(xí)冊答案