【題目】已知函數(shù)

(1)討論的單調性;

(2),若函數(shù)的圖象有且僅有一個交點,的值(其中表示不超過的最大整數(shù),.

參考數(shù)據(jù):

【答案】1)當時, 單調遞減;當時,單調遞減;單調遞增. 22

【解析】

1)對進行求導,討論的取值范圍,令,解不等式即可求解.

2)兩函數(shù)有且僅有一個交點 ,則方程

即方程只有一個根, 令,研究

的單調性,求出的零點,然后根據(jù)零點存在性定理判斷零點所在的區(qū)間即可.

解:(1

對于函數(shù)

時,則單調遞減;

時,令,則,解得

單調遞減;

,解得,所以單調遞增.

2且兩函數(shù)有且僅有一個交點 ,則方程

即方程只有一個根

,則

,則

單調遞減,在上單調遞增,故

注意到無零點,在僅有一個變號的零點

單調遞減,在單調遞增,注意到

根據(jù)題意 的唯一零點即

消去,得:

,可知函數(shù)上單調遞增

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.

(1)求的普通方程和的直角坐標方程;

(2)若過點的直線交于兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為

1)求曲線的直角坐標方程與直線l的參數(shù)方程;

2)設直線與曲線交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設點的坐標分別為,直線相交于點,且它們的斜率之積為

(1)求點的軌跡方程;

(2)設點的軌跡為,點是軌跡為上不同于的兩點,且滿足,求證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=4x的焦點的直線l與拋物線交于A,B兩點,設點M30.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四面體中,棱,所在直線所成角為,且,,,面和面所成的銳二面角為,面和面所成的銳二面角為,當四面體的體積取得最大值時( .

A.B.C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是拋物線上的兩個不同的點,是坐標原點.若直線的斜率之積為,則( ).

A.B.為直徑的圓的面積大于

C.直線過定點D.到直線的距離不大于2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】法國數(shù)學家龐加是個喜歡吃面包的人,他每天都會購買一個面包,面包師聲稱自己出售的每個面包的平均質量是1000,上下浮動不超過50.這句話用數(shù)學語言來表達就是:每個面包的質量服從期望為1000,標準差為50的正態(tài)分布.

1)假設面包師的說法是真實的,從面包師出售的面包中任取兩個,記取出的兩個面包中質量大于1000的個數(shù)為,求的分布列和數(shù)學期望;

2)作為一個善于思考的數(shù)學家,龐加萊每天都會將買來的面包稱重并記錄,25天后,得到數(shù)據(jù)如下表,經計算25個面包總質量為24468.龐加萊購買的25個面包質量的統(tǒng)計數(shù)據(jù)(單位:

981

972

966

992

1010

1008

954

952

969

978

989

1001

1006

957

952

969

981

984

952

959

987

1006

1000

977

966

盡管上述數(shù)據(jù)都落在上,但龐加菜還是認為面包師撒謊,根據(jù)所附信息,從概率角度說明理由

附:

,從X的取值中隨機抽取25個數(shù)據(jù),記這25個數(shù)據(jù)的平均值為Y,則由統(tǒng)計學知識可知:隨機變量

,則,;

通常把發(fā)生概率在0.05以下的事件稱為小概率事件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,底面,分別是、上的點,且平面

(Ⅰ)求證:的中點;

(Ⅱ)當與平面所成的角最大時,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案