(本小題滿分12分)某班從6名班干部中(男生4人,女生2人)選3人參加學校義務勞動;(1)求男生甲或女生乙被選中的概率;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率;
(3)設所選3人中女生人數(shù)為,求的分布列及數(shù)學期望。
(1);(2);
(3)

0
1
2





試題分析:(1)……………………………………………………………4分
(2)………………………………………………………………….……..8分
(3)

0
1
2




………………………………………………………………… ………..12分
點評:本題主要考查等可能事件的概率與離散型隨機變量的分布列、期望與方差等知識點,屬于中檔題型,高考命題的趨向.分布列的求解應注意以下幾點:(1)弄清隨機變量每個取值對應的隨機事件;(2)計算必須準確無誤;(3)注意用分布列的兩條性質(zhì)檢驗所求的分布列是否正確。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

由于某高中建設了新校區(qū),為了交通方便要用三輛通勤車從新校區(qū)把教師接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響.
(1)若三輛汽車中恰有一輛汽車被堵的概率為,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛汽車中被堵車輛的個數(shù)ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人玩猜數(shù)字游戲,規(guī)則如下:
①連續(xù)競猜次,每次相互獨立;
②每次竟猜時,先由甲寫出一個數(shù)字,記為,再由乙猜測甲寫的數(shù)字,記為,已知,若,則本次競猜成功;
③在次競猜中,至少有次競猜成功,則兩人獲獎.
(Ⅰ) 求甲乙兩人玩此游戲獲獎的概率;
(Ⅱ)現(xiàn)從人組成的代表隊中選人參加此游戲,這人中有且僅有對雙胞胎,記選出的人中含有雙胞胎的對數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某高校在2013年考試成績中100名學生的筆試成績的頻率分布直方圖如圖所示,

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,
① 已知學生甲和學生乙的成績均在第三組,求學生甲和學生乙不同時進入第二輪面試的概率;
② 若第三組被抽中的學生實力相當,在第二輪面試中獲得優(yōu)秀的概率均為,設第三組中被抽中的學生有名獲得優(yōu)秀,求的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設隨機變量X的分布為,則的值為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法正確的個數(shù)是
(1)線性回歸方程必過
(2)在一個列聯(lián)表中,由計算得=4.235,則有95%的把握確認這兩個變量間沒有關系
(3)復數(shù)
(4)若隨機變量,且p(<4)=p,則p(0<<2)=2p-1
A.1B.2C.3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)袋中裝著標有數(shù)字1,2,3,4,5的小球各2個,從袋中任取3個小球,按3個小球上最大數(shù)字的9倍計分,每個小球被取出的可能性都相等,用表示取出的3個小球上的最大數(shù)字,求:
(Ⅰ)取出的3個小球上的數(shù)字互不相同的概率;
(Ⅱ)隨機變量的分布列和數(shù)學期望;
(Ⅲ)計分介于20分到40分之間的概率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知隨機變量X的分布列為_______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

第30屆夏季奧運會將于2012年7月27日在倫敦舉行,當?shù)啬硨W校招募了8名男志愿者和12名女志愿者。將這20名志愿者的身高編成如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個子”,身高在180cm以下(不包括180cm)定義為“非高個子”,且只有“女高個子”才能擔任“禮儀小姐”。
(I)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?
(Ⅱ)若從所有“高個子”中選3名志愿者,用X表示所選志愿者中能擔任“禮儀小姐”的人數(shù),試寫出X的分布列,并求X的數(shù)學期望。

查看答案和解析>>

同步練習冊答案