【題目】2019年高考前夕某地天空出現(xiàn)了一朵點(diǎn)贊云,為了將這朵祥云送給馬上升高三的各位學(xué)子,現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為,在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程:
(2)點(diǎn)為曲線上任意一點(diǎn),點(diǎn)為曲線上任意一點(diǎn),求的最小值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若對定義域內(nèi)的任意,都有成立,求實(shí)數(shù)的值;
(2)若函數(shù)的定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)若,證明對任意的正整數(shù), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:在函數(shù)的圖象上,以為切點(diǎn)的切線的傾斜角為.
(Ⅰ)求,的值;
(Ⅱ)是否存在最小的正整數(shù),使得不等式對于恒成立?如果存在,請求出最小的正整數(shù);如果不存在,請說明理由;
(Ⅲ)求證:(,).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)為“可等域函數(shù)”,區(qū)間A為函數(shù)的一個“可等域區(qū)間”.給出下列四個函數(shù):①;②;③;④.其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的各項(xiàng)為正數(shù),且,數(shù)列滿足:對任意恒成立,且常數(shù).
(1)若為等差數(shù)列,求證:也為等差數(shù)列;
(2)若,為等比數(shù)列,求的值(用c表示);
(3)若且,令,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,是上任意一點(diǎn)。
(1)求證:;
(2)當(dāng)面積的最小值是9時,在線段上是否存在點(diǎn),使與平面所成角的正切值為2?若存在?求出的值,若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點(diǎn),=AC=CB=AB.
(Ⅰ)證明://平面;
(Ⅱ)求二面角D--E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(且)
(1)若函數(shù)存在零點(diǎn),求實(shí)數(shù)的最小值;
(2)若函數(shù)有兩個零點(diǎn)分別是,且對于任意的時恒成立,求實(shí)數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:方案一:每戶每月收管理費(fèi)2元,月用電不超過30度時,每度0.5元;超過30度時,超過部分按每度0.6元收取. 方案二:不收管理費(fèi),每度0.58元.
(1)求方案一收費(fèi)元與用電量x (度)之間的函數(shù)關(guān)系;
(2)老王家九月份按方案一交費(fèi)35元,問老王家該月用電多少度?
(3)老王家月用電最在什么范圍時,選擇方案一比選擇方案二更好?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com