如圖,點(diǎn)P(0,-1)是橢圓C1=1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2x2y2=4的直徑.l1,l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.

(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時(shí)直線l1的方程.

(1)y2=1(2)y=±x-1

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且截拋物線的準(zhǔn)線所得弦長(zhǎng)為,傾斜角為的直線過(guò)點(diǎn).
(1)求該橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為,問(wèn)拋物線上是否存在一點(diǎn),使得關(guān)于直線對(duì)稱,若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一條曲線軸右側(cè),上每一點(diǎn)到點(diǎn)的距離減去它到軸距離的差都是1.
(1)求曲線的方程;
(2)設(shè)直線交曲線兩點(diǎn),線段的中點(diǎn)為,求直線的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓=1上任一點(diǎn)P,由點(diǎn)Px軸作垂線PQ,垂足為Q,設(shè)點(diǎn)MPQ上,且=2,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),且滿足 (O為原點(diǎn)),且四邊形OANB為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,F是拋物線Cx2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)M,F,O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為.
(1)求拋物線C的方程.
(2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,焦距為的橢圓的兩個(gè)頂點(diǎn)分別為,且與n,共線.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓有兩個(gè)不同的交
點(diǎn),且原點(diǎn)總在以為直徑的圓的內(nèi)部,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知分別是橢圓的左,右頂點(diǎn),點(diǎn)在橢圓 上,且直線與直線的斜率之積為

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)為橢圓上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),直線,與橢圓的右準(zhǔn)線分別交于點(diǎn)
①在軸上是否存在一個(gè)定點(diǎn),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
②已知常數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C=1(a>b>0)的離心率e,右焦點(diǎn)到直線=1的距離d,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于AB兩點(diǎn),證明,點(diǎn)O到直線AB的距離為定值,并求弦AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓的交點(diǎn)為,求弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案