已知函數(shù)f(x)=
1
2
x2+lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當x>1時,
1
2
x2+lnx<
2
3
x3
分析:(1)確定函數(shù)的定義域,求導函數(shù),可得導數(shù)的正負,即可得到函數(shù)的單調(diào)區(qū)間;
(2)構造函數(shù)g(x)=
2
3
x3-
1
2
x2-lnx,確定g(x)在(1,+∞)上為增函數(shù),即可證得結論.
解答:(1)解:依題意知函數(shù)的定義域為{x|x>0},
∵f′(x)=x+
1
x
,∴f′(x)>0,
∴f(x)的單調(diào)增區(qū)間為(0,+∞).
(2)證明:設g(x)=
2
3
x3-
1
2
x2-lnx,
∴g′(x)=2x2-x-
1
x

∵當x>1時,g′(x)=
(x-1)(2x2+x+1)
x
>0,
∴g(x)在(1,+∞)上為增函數(shù),
∴g(x)>g(1)=
1
6
>0,
∴當x>1時,
1
2
x2+lnx<
2
3
x3
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查不等式的證明,正確構造函數(shù),確定函數(shù)的單調(diào)性是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a=1時,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當a=1時,求證對任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習冊答案