【題目】已知函數(shù)的最大值為

)求常數(shù)的值;

)求函數(shù)的單調(diào)遞增區(qū)間;

)若將的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值.

【答案】(1);(2);(3)最大值,最小值-3.

【解析】

試題分析:(1)利用兩角和正弦公式和降冪公式化簡(jiǎn),得到的形式,在計(jì)算所求.(2)利用正弦函數(shù)的最值,求在的最值.(3)求三角函數(shù)的最小正周期一般化成,形式,利用周期公式即可.(4)求解較復(fù)雜三角函數(shù)的單調(diào)區(qū)間時(shí),首先化成形式,再的單調(diào)區(qū)間,只需把看作一個(gè)整體代入相應(yīng)的單調(diào)區(qū)間,注意先把化為正數(shù),這是容易出錯(cuò)的地方.

試題解析:解:(1)

,

,解得

,所以函數(shù)的單調(diào)遞增區(qū)間

的圖象向左平移個(gè)單位,得到函數(shù)的圖象,

當(dāng)時(shí),,取最大值

當(dāng)時(shí),,取最小值-3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線x2=ay(a>0)的準(zhǔn)線l與y軸交于點(diǎn)P,若l繞點(diǎn)P以每秒 弧度的角速度按逆時(shí)針方向旋轉(zhuǎn)t秒鐘后,恰與拋物線第一次相切,則t等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合.

1)若,的概率;

(2)若,的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 求平行于直線3x+4y-12=0,且與它的距離是7的直線的方程;

求垂直于直線x+3y-5="0," 且與點(diǎn)P(-1,0)的距離是的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

2)過橢圓的上頂點(diǎn)作直線交拋物線兩點(diǎn), 為原點(diǎn).

①求證: ;

②設(shè)分別與橢圓相交于、兩點(diǎn),過原點(diǎn)作直線的垂線,垂足為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A2,4

1)設(shè)圓Nx軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;

3)設(shè)點(diǎn)Tt,o)滿足:存在圓M上的兩點(diǎn)PQ,使得,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象過點(diǎn),對(duì)任意滿足,且最小值是.

(1)求的解析式;

(2)設(shè)函數(shù),其中,求在區(qū)間上的最小值;

(3)若在區(qū)間上,函數(shù)的圖象恒在函數(shù)的圖象上方,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,若對(duì)于任意數(shù)列滿足,則稱數(shù)列為“數(shù)列”.

(Ⅰ)已知數(shù)列:,是“數(shù)列”,求實(shí)數(shù)的取值范圍.

(Ⅱ)是否存在首項(xiàng)為的等差數(shù)列為“數(shù)列”,且前項(xiàng)和滿足,若存在,求出的通項(xiàng)公式,若不存在,請(qǐng)說明理由;

(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列是“數(shù)列”,數(shù)列不是“數(shù)列”,若數(shù)列,試判斷數(shù)列是否“數(shù)列”,并且說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+ )=2
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ|的最小值及此時(shí)P的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案