【題目】在四棱柱中,已知底面為等腰梯形,,MN分別是棱的中點(diǎn)

1)證明:直線平面

2)若平面,且,求經(jīng)過點(diǎn)AM,N的平面與平面所成二面角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)取的中點(diǎn)P,連結(jié),證得,利用線平行的判定定理,即可證得直線平面

2)以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,分別求得平面和平面的一個法向量,利用向量的夾角公式,即可求解.

1)取的中點(diǎn)P,連結(jié),,所以,且

所以,且,所以是平行四邊形,所以,

因?yàn)?/span>平面,所以直線平面.

2)連結(jié)

由己知可得,,所以為等邊三角形,

所以,,所以

,所以,

分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,

,,,,, 所以,

可得,,.

設(shè)平面的法向量為,所以,即,取,解得,所以,

設(shè)平面的一個法向量為,,即,

,可得 ,所以,

設(shè)平面與平面所成二面角的大小為

所以,則

所以平面與平面所成二面角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線)與交于兩點(diǎn),的中點(diǎn),為坐標(biāo)原點(diǎn).

1)求直線斜率的最大值;

2)若點(diǎn)在直線上,且為等邊三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中, , , 邊上,且,將沿折到的位置,使得平面平面.

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線經(jīng)過點(diǎn),兩個焦點(diǎn)為,

1)求的方程;

2)設(shè)上一點(diǎn),直線與直線相交于點(diǎn),與直線相交于點(diǎn),證明:當(dāng)點(diǎn)在上移動時,為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為:,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1)求曲線和直線l的直角坐標(biāo)方程;

2)若點(diǎn)在曲線上,且點(diǎn)到直線l的距離最小,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓過點(diǎn),且離心率.

1)求橢圓的方程;

2)直線的斜率為,直線與橢圓交于、兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,成等比數(shù)列,且,

)求證:數(shù)列是等差數(shù)列;

)求數(shù)列的通項(xiàng)公式;

)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,AD2ECD的中點(diǎn),現(xiàn)以AE為折痕將△DAE向上折起,D變?yōu)?/span>D',使得平面D'AE⊥平面ABCE

1)求證:平面ABD'⊥平面BD'E;

2)求直線CE與平面BCD'所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

求分?jǐn)?shù)在[120,130)內(nèi)的頻率,并補(bǔ)全這個頻

率分布直方圖;

統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)

值作為代表,據(jù)此估計本次考試的平均分;

(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案