【題目】某經(jīng)銷商計(jì)劃銷售一款新型的空氣凈化器,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn)以下規(guī)律:當(dāng)每臺(tái)凈化器的利潤為 x (單位:元, x 0 )時(shí),銷售量 q(x) (單位:百臺(tái))與 x 的關(guān)系滿足:若 x 不超過 20 , ;若 x 大于或等于180 ,則銷售量為零;當(dāng) 20 ≤ x ≤180 時(shí),( a , b 為實(shí)常數(shù)).

(Ⅰ)求函數(shù) q(x) 的表達(dá)式;

(Ⅱ)當(dāng) x 為多少時(shí),總利潤(單位:元)取得最大值,并求出該最大值.

【答案】(1).

(2)當(dāng) x 等于80 元時(shí),總利潤取得最大值 240000 元.

【解析】

試題分析:(1)求分段函數(shù)解析式,可從分段的節(jié)點(diǎn)出發(fā),尋找條件,確定參數(shù):解得列出2)先列出利潤函數(shù)解析式,分三段求最值,第一段為分式函數(shù),可利用變量分離,結(jié)合單調(diào)性求最大值;第二段利用導(dǎo)數(shù)求極值點(diǎn),研究單調(diào)趨勢(shì),求最大值;第三段為常函數(shù),最后求三段最大值的最大值

試題解析:解:(1)當(dāng)時(shí),由

2)設(shè)總利潤,

由(1)得

當(dāng)時(shí),,上單調(diào)遞增,

所以當(dāng)時(shí),有最大值

當(dāng)時(shí),,,

,得

當(dāng)時(shí),單調(diào)遞增,

當(dāng)時(shí),,單調(diào)遞減,

所以當(dāng)時(shí),有最大值

當(dāng)時(shí),

答:當(dāng)等于元時(shí),總利潤取得最大值元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy24x和直線lx=-1.

(1)若曲線C上存在一點(diǎn)Q,它到l的距離與到坐標(biāo)原點(diǎn)O的距離相等,求Q點(diǎn)的坐標(biāo);

(2)過直線l上任一點(diǎn)P作拋物線的兩條切線,切點(diǎn)記為A,B,求證:直線AB過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,∠BAD=120°,∠BCD=60°,cosD=﹣ ,AD=DC=2.
(Ⅰ)求cos∠DAC及AC的長(zhǎng);
(Ⅱ)求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)過點(diǎn)作直線使它被直線截得的線段被點(diǎn)平分,求直線的方程;

2)光線沿直線射入,遇直線后反射,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|3≤≤27},B={x|>1}.

(1)分別求A∩B,()∪A;

(2)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在參加市里主辦的科技知識(shí)競(jìng)賽的學(xué)生中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,這40名學(xué)生的成績(jī)?nèi)吭?0分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組,成績(jī)大于等于40分且小于50分;第二組,成績(jī)大于等于50分且小于60分;……第六組,成績(jī)大于等于90分且小于等于100分,據(jù)此繪制了如圖所示的頻率分布直方圖.在選取的40名學(xué)生中.

(1)求成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù)及成績(jī)?cè)趨^(qū)間內(nèi)平均成績(jī);

(2)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選3名學(xué)生,求至少有1名學(xué)生成績(jī)?cè)趨^(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的f(x)= sin(ωx+φ)(ω>0,﹣ )圖象關(guān)于直線x= 對(duì)稱,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π,若 (0<α<π),則 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量X服從正態(tài)分布Nμ,σ2),且PμXμ)=0.954 4,PμσXμσ)=0.682 6.μ4,σ1,則P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知P(x0 , y0)是橢圓C: =1上一點(diǎn),過原點(diǎn)的斜率分別為k1 , k2的兩條直線與圓(x﹣x02+(y﹣y02= 均相切,且交橢圓于A,B兩點(diǎn).

(1)求證:k1k2=﹣ ;
(2)求|OA||OB|得最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案