【題目】某個年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學(xué)生中抽取一個容量為280的樣本,則此樣本中男生人數(shù)為

【答案】160
【解析】解:∵有男生560人,女生420人,
∴年級共有560+420=980
∵用分層抽樣的方法從該年級全體學(xué)生中抽取一個容量為280的樣本,
∴每個個體被抽到的概率是 = ,
∴要從男生中抽取560× =160,
所以答案是:160
【考點精析】本題主要考查了分層抽樣的相關(guān)知識點,需要掌握先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動比賽道,賽道的前一部分為曲線段FBC,該曲線段是函數(shù) (A>0,ω>0),x∈[﹣4,0]時的圖象,且圖象的最高點為B(﹣1,2).賽道的中間部分為長 千米的直線跑道CD,且CD∥EF.賽道的后一部分是以O(shè)為圓心的一段圓弧
(1)求ω的值和∠DOE的大小;
(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個“矩形草坪”,矩形的一邊在道路EF上,一個頂點在半徑OD上,另外一個頂點P在圓弧 上,且∠POE=θ,求當(dāng)“矩形草坪”的面積取最大值時θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,
(1)當(dāng)n=1,2,3時,分別比較f(n)與g(n)的大小(直接給出結(jié)論);
(2)由(1)猜想f(n)與g(n)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,且,

(1)求數(shù)列的通項公式;

(2)數(shù)列滿足, .①求數(shù)列的通項公式;②是否存在正整數(shù), ),使得 成等差數(shù)列?若存在,求出, 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=ax2+(a﹣2)x﹣2(a∈R).
(1)解關(guān)于x的不等式f(x)≥0;
(2)若a>0,當(dāng)﹣1≤x≤1時,f(x)≤0時恒成立,求a的取值范圍.
(3)若當(dāng)﹣1<a<1時,f(x)>0時恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2sin4x+2cos4x+cos22x﹣3.
(1)求函數(shù)f(x)的最小正周期.
(2)求函數(shù)f(x)在閉區(qū)間[ ]上的最小值并求當(dāng)f(x)取最小值時,x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=4sin(2x )(x∈R),有下列命題: ①y=f(x)的表達(dá)式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點 對稱;
④y=f(x)的圖象關(guān)于直線x=﹣ 對稱.
其中正確的命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左、右頂點分別為,上、下頂點分別為,兩個焦點分別為, ,四邊形的面積是四邊形的面積的2.

1求橢圓的方程;

2過橢圓的右焦點且垂直于軸的直線交橢圓兩點, 是橢圓上位于直線兩側(cè)的兩點.若直線過點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x+1)的定義域為[0,1],則函數(shù)f(2x﹣2)的定義域為(
A.[log23,2]
B.[0,1]
C.
D.[0,2]

查看答案和解析>>

同步練習(xí)冊答案