(本題滿分14分) 已知F1、F2是橢圓的左、右焦點,A是橢圓上位于第一象限內(nèi)的一點,點B也在橢圓上,且滿足(是坐標原點),,若橢圓的離心率等于.
(Ⅰ)求直線AB的方程;
(Ⅱ)若三角形ABF2的面積等于4,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,橢圓上是否存在點M,使得三角形MAB的面積等于8.
(Ⅰ)
(Ⅱ)
(Ⅲ)橢圓上不存在點M使得三角形MAB的面積等于
【解析】本試題主要是考查了直線方程的求解,以及橢圓方程的求解和三角形面頰的綜合運用。
(1)根據(jù)已知的向量關(guān)系,直線過原點,并且向量的垂直關(guān)系可以得到點A的坐標,然后將點A的坐標代入橢圓方程中可知得到直線的方程。
(2)連結(jié)AF1、BF1、AF2、BF2,由橢圓的對稱性可知,參數(shù)a,bc的關(guān)系式,進而得到橢圓的方程。
(3)由于由(Ⅱ)可以求得|AB|=2|OA|
假設(shè)在橢圓上存在點M使得三角形MAB的面積等于8
設(shè)點M到直線AB的距離為d,則應有
利用三角形的面積公式得到。
解:(Ⅰ)由知,直線AB經(jīng)過原點,又由知,因為橢圓的離心率等于……2分
設(shè)A(),由知
∴A(),代入橢圓方程得 ∴A(),故直線AB的斜率
因此直線AB的方程為……………4分
(Ⅱ)連結(jié)AF1、BF1、AF2、BF2,由橢圓的對稱性可知
,所以……………6分
又由解得 故橢圓方程為……………8分
(Ⅲ)由(Ⅱ)可以求得|AB|=2|OA|=2……………9分
假設(shè)在橢圓上存在點M使得三角形MAB的面積等于8
設(shè)點M到直線AB的距離為,則應有
∴……………10分
與AB平行且距離為4的直線為
消去x得 ……………13分
此方程無解故橢圓上不存在點M使得三角形MAB的面積等于……………14分
另解:設(shè)點P(4)為橢圓上任意一點
則P到直線的距離為
……………13分
故橢圓上不存在點M使得三角形MAB的面積等于……………14分
科目:高中數(shù)學 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實數(shù)m的值
(Ⅱ)若ACRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題
(本題滿分14分)
已知點是⊙:上的任意一點,過作垂直軸于,動點滿足。
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com