【題目】已知橢圓C:上頂點(diǎn)為A,右頂點(diǎn)為B,離心率,O為坐標(biāo)原點(diǎn),原點(diǎn)到直線AB的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線與橢圓C相交于E、F兩不同點(diǎn),若橢圓C上一點(diǎn)P滿足.求△EPF面積的最大值及此時(shí)的.
【答案】(1);(2)當(dāng)時(shí),的面積的最大值為.
【解析】
(1)設(shè)出直線的方程為::,原點(diǎn)到直線的距離為,列出關(guān)系式, 通過,利用離心率,求出,,得到橢圓的標(biāo)準(zhǔn)方程.
(2)聯(lián)立直線與橢圓方程, 設(shè),,,,利用韋達(dá)定理, 以及弦長公式, 點(diǎn)到直線的距離,,利用二次函數(shù)的最值, 求解的面積的最大值,以及的值
(1)由題意,,則,①
∵A(0,b),B(a,0),則直線AB的方程為:,即為,
∵原點(diǎn)到直線AB的距離為,
∴,
∴,②
∵,③
由①②③得:,
所以橢圓C的標(biāo)準(zhǔn)方程為:;
(2)由可得:,
設(shè),,
則,,
∴
又點(diǎn)O到直線EF的距離,
∵,
∴
又因?yàn)?/span>,又,∴,
令,則,
所以當(dāng)時(shí),最大值為:
所以當(dāng)時(shí),△EPF的面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AB=AD,BD⊥CD,點(diǎn)E、F分別是棱BC、BD的中點(diǎn).
(1)求證:EF∥平面ACD;
(2)求證:AE⊥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體A﹣BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四邊形BCC1B1是矩形,二面角A﹣BC﹣C1為直二面角.
(1)D在AC上運(yùn)動(dòng),當(dāng)D在何處時(shí),有AB1//平面BDC1,并且說明理由;
(2)當(dāng)AB1//平面BDC1時(shí),求二面角C﹣BC1﹣D余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)),點(diǎn)的極坐標(biāo)為,設(shè)直線與曲線相交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在底面是菱形的四棱錐中,,點(diǎn)E在PD上,且.
(1)證明:平面ABCD;
(2)求二面角的大。
(3)棱PC上是否存在一點(diǎn)F,使平面AEC?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式:
(2)若對(duì)任意的n∈N*,不等式1≤man≤5恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成的三角形面積為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:相切的直線l交橢圓C于A,B兩點(diǎn)(O為坐標(biāo)原點(diǎn)),求△AOB面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在十九大“建設(shè)美麗中國”的號(hào)召下,某省級(jí)生態(tài)農(nóng)業(yè)示范縣大力實(shí)施綠色生產(chǎn)方案,對(duì)某種農(nóng)產(chǎn)品的生產(chǎn)方式分別進(jìn)行了甲、乙兩種方案的改良。為了檢查甲、乙兩種方案的改良效果,隨機(jī)在這兩種方案中各任意抽取了40件產(chǎn)品作為樣本逐件稱出它們的重量(單位:克),重量值落在之間的產(chǎn)品為合格品,否則為不合格品。下表是甲、乙兩種方案樣本頻數(shù)分布表。
產(chǎn)品重量 | 甲方案頻數(shù) | 乙方案頻數(shù) |
6 | 2 | |
8 | 12 | |
14 | 18 | |
8 | 6 | |
4 | 2 |
(1)根據(jù)上表數(shù)據(jù)求甲(同組中的重量值用組中點(diǎn)數(shù)值代替)方案樣本中40件產(chǎn)品的平均數(shù)和中位數(shù)
(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答有多大把握認(rèn)為“產(chǎn)品是否為合格品與改良方案的選擇有關(guān)”.
甲方案 | 乙方案 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
參考公式:,其中.
臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.814 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com