【題目】如圖,GH是東西方向的公路北側的邊緣線,某公司準備在GH上的一點B的正北方向的A處建設一倉庫,設AB=ykm,并在公路北側建造邊長為xkm的正方形無頂中轉站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉站分別修兩條道路AB,AC,已知AB=AC+1,且∠ABC=60°。
(1)求y關于x的函數解析式,并求出定義域;
(2)如果中轉站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:x取何值時,該公司建設中轉站圍墻和兩條道路總造價M最低.
【答案】
(1)解:在△BCF中,CF=x,∠FBC=30°,CF⊥BF,所以BC=2x.
在△ABC中,AB=y,AC=y﹣1,∠ABC=60°,
由余弦定理,得AC2=BA2+BC2﹣2BABCcos∠ABC,…
即 ((y﹣1)2=y2+(2x)2﹣2y2xcos60°,
所以 .…
由AB﹣AC<BC,得 .又因為 >0,所以x>1.
所以函數 的定義域是(1,+∞).
(2)解:M=30(2y﹣1)+40x.
因為 .(x>1),所以M=30
即 M=10 .
令t=x﹣1,則t>0.于是M(t)=10(16t+ ),t>0,
由基本不等式得M(t)≥10(2 )=490,
當且僅當t= ,即x= 時取等號.
答:當x= km時,公司建中轉站圍墻和兩條道路最低總造價M為490萬元.
【解析】(1)在△BCF中,CF=x,∠FBC=30°,CF⊥BF,BC=2x.在△ABC中,AB=y,AC=y﹣1,∠ABC=60°,由余弦定理,求解函數的解析式,然后求解定義域.(2)求出M=30(2y﹣1)+40x,通過基本不等式求解表達式的最值即可.
【考點精析】關于本題考查的函數的最值及其幾何意義,需要了解利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(。┲;利用函數單調性的判斷函數的最大(。┲挡拍艿贸稣_答案.
科目:高中數學 來源: 題型:
【題目】如圖,已知動直線l過點 ,且與圓O:x2+y2=1交于A、B兩點.
(1)若直線l的斜率為 ,求△OAB的面積;
(2)若直線l的斜率為0,點C是圓O上任意一點,求CA2+CB2的取值范圍;
(3)是否存在一個定點Q(不同于點P),對于任意不與y軸重合的直線l,都有PQ平分∠AQB,若存在,求出定點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中點.
(1)求證:PB⊥AC.
(2)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題甲:關于x的不等式x2+(a﹣1)x+a2>0的解集為R;命題乙:函數y=(2a2﹣a)x為增函數,當甲、乙有且只有一個是真命題時,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線y2=8x的準線與x軸交于點Q,若過點Q的直線l與拋物線有公共點,則直線l的斜率的取值范圍是( )
A.[﹣ , ]
B.[﹣2,2]
C.[﹣1,1]
D.[﹣4,4]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,若向量 =(﹣cosB,sinC), =(﹣cosC,﹣sinB),且 . (Ⅰ)求角A的大。
(Ⅱ)若b+c=4,△ABC的面積 ,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= AB=1,M為PB中點.
(1)證明:CM∥平面PAD;
(2)求二面角A﹣MC﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且b2+c2﹣a2=bc.
(1)求角A的大小;
(2)若a= ,且△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2﹣6x﹣4y+4=0,點P(6,0).
(1)求過點P且與圓C相切的直線方程l;
(2)若圓M與圓C外切,且與x軸切于點P,求圓M的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com