已知數(shù)列{an}的前n項和Sn滿足Snan n-1=2(n∈N*),設(shè)cn=2nan.
(1)求證:數(shù)列{cn}是等差數(shù)列,并求數(shù)列{an}的通項公式.
(2)按以下規(guī)律構(gòu)造數(shù)列{bn},具體方法如下:
b1c1,b2c2c3,b3c4c5c6c7,…,第nbn由相應的{cn}中2n-1項的和組成,求數(shù)列{bn}的通項bn

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)f(x)=(x>0),數(shù)列{an}滿足a1=1,anf (n∈N*,且n≥2).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Tna1a2a2a3a3a4a4a5+…+(-1)n-1·anan+1,若Tntn2n∈N*恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知無窮數(shù)列{an}的各項均為正整數(shù),Sn為數(shù)列{an}的前n項和.
(1)若數(shù)列{an}是等差數(shù)列,且對任意正整數(shù)n都有Sn3=(Sn)3成立,求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)n,從集合{a1a2,…,an}中不重復地任取若干個數(shù),這些數(shù)之間經(jīng)過加減運算后所得數(shù)的絕對值為互不相同的正整數(shù),且這些正整數(shù)與a1,a2,…,an一起恰好是1至Sn全體正整數(shù)組成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在公差為d的等差數(shù)列{an}中,已知
a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an
(2)若d<0,求|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為,數(shù)列滿足:
(1)求數(shù)列的通項公式;
(2)求數(shù)列的通項公式;(3)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足,,
(1)若成等比數(shù)列,求的值;
(2)是否存在,使數(shù)列為等差數(shù)列?若存在,求出所有這樣的;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=14.
(I)求{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足:,求{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32=9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)正項數(shù)列{an}的前n項和是Sn,若{an}和{}都是等差數(shù)列,且公差相等.
(1)求{an}的通項公式;
(2)若a1,a2,a5恰為等比數(shù)列{bn}的前三項,記數(shù)列cn,數(shù)列{cn}的前n項和為Tn,求Tn.

查看答案和解析>>

同步練習冊答案