(2012•江門一模)(幾何證明選講選做題)
如圖,E、F是梯形ABCD的腰AD、BC上的點(diǎn),其中CD=2AB,EF∥AB,若
EF
AB
=
CD
EF
,則
AE
ED
=
2
2
(或相等的數(shù)值)
2
2
(或相等的數(shù)值)
分析:說(shuō)明梯形AEFD、EBCF相似,EF與AB的關(guān)系,根據(jù)相似多邊形的對(duì)應(yīng)邊比例關(guān)系,因而可以把求
AE
ED
轉(zhuǎn)化為求
AB
EF
解答:解:因?yàn)?span id="xfth9nx" class="MathJye">
EF
AB
=
CD
EF
,EF∥AB,所以梯形AEFD∽梯形EBCF,
∴EF2=AB•CD=2AB2,EF=
2
AB,
并且
AE
ED
=
AB
EF
=
AB
2
AB
=
2
2

故答案為:
2
2
點(diǎn)評(píng):本題考查了相似多邊形的對(duì)應(yīng)邊的比相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江門一模)有人收集了春節(jié)期間平均氣溫x與某取暖商品銷售額y的有關(guān)數(shù)據(jù)如下表:
平均氣溫(℃) -2 -3 -5 -6
銷售額(萬(wàn)元) 20 23 27 30
根據(jù)以上數(shù)據(jù),用線性回歸的方法,求得銷售額y與平均氣溫x之間線性回歸方程y=
b
x+a的系數(shù)
b
=-2.4
.則預(yù)測(cè)平均氣溫為-8℃時(shí)該商品銷售額為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江門一模)如圖,某幾何體的正視圖和側(cè)視圖都是對(duì)角線長(zhǎng)分別為4和3的菱形,俯視圖是對(duì)角線長(zhǎng)為3的正方形,則該幾何體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江門一模)如圖,四邊形ABCD中,AB=5,AD=3,cosA=
45
,△BCD是等邊三角形.
(1)求四邊形ABCD的面積;
(2)求sin∠ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江門一模)已知函數(shù)f(x)=lnx-ax+1,a∈R是常數(shù).
(1)求函數(shù)y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線l的方程,并證明函數(shù)y=f(x)(x≠1)的圖象在直線l的下方;
(2)討論函數(shù)y=f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案