【題目】對(duì)于函數(shù)與,記集合;
(1)設(shè),,求.
(2)設(shè),,若,求實(shí)數(shù)a的取值范圍.
(3)設(shè).如果求實(shí)數(shù)b的取值范圍.
【答案】(1)或; (2); (3).
【解析】
(1)由題意,得到不等式,即可求解;
(2)由,得出不等式在上恒成立,利用二次函數(shù)的性質(zhì),分類討論,即可求解;
③由,求得,又由,可得,分類討論,使得,即可求解.
(1)由題意,函數(shù),,
令,即或,解得或
所以或.
(2)由題意,函數(shù),,
又由,即不等式的解集為,
即在上恒成立,
①當(dāng)時(shí),即時(shí),不等式為在上恒成立;
②當(dāng)時(shí),則滿足且,解得,
綜上所述,實(shí)數(shù)的取值范圍是.
③由題意,函數(shù),
由,可得,解得,
又由,可得,
①當(dāng)時(shí),不等式的解集為,要使得,
則滿足,即,所以此時(shí);
②當(dāng)時(shí),不等式的解集為或,要使得,
則滿足,即,所以此時(shí);
③當(dāng)時(shí),不等式的解集為或,要使得,
則滿足恒成立,所以此時(shí),
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一款手機(jī),每部購(gòu)買費(fèi)用是5000元,每年網(wǎng)絡(luò)費(fèi)和電話費(fèi)共需1000元;每部手機(jī)第一年不需維修,第二年維修費(fèi)用為100元,以后每一年的維修費(fèi)用均比上一年增加100元.設(shè)該款手機(jī)每部使用年共需維修費(fèi)用元,總費(fèi)用元.(總費(fèi)用購(gòu)買費(fèi)用網(wǎng)絡(luò)費(fèi)和電話費(fèi)維修費(fèi)用)
(1)求函數(shù)、的表達(dá)式:
(2)這款手機(jī)每部使用多少年時(shí),它的年平均費(fèi)用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)在處取得極值,且對(duì)任意, 恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對(duì)他們的射箭水平進(jìn)行測(cè)試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績(jī),然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖中的幾何體是由兩個(gè)有共同底面的圓錐組成.已知兩個(gè)圓錐的頂點(diǎn)分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點(diǎn),B為底面圓周上的動(dòng)點(diǎn)(不與A重合).下列四個(gè)結(jié)論:
①三棱錐體積的最大值為;
②直線PB與平面PAQ所成角的最大值為;
③當(dāng)直線BQ與AP所成角最小時(shí),其正弦值為;
④直線BQ與AP所成角的最大值為;
其中正確的結(jié)論有___________.(寫出所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱ABC﹣A1B1C1中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,∠BAA1=∠CAA1=60°,則異面直線AB1與BC1所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】樣本(x1 , x2…,xn)的平均數(shù)為x,樣本(y1 , y2 , …,ym)的平均數(shù)為 ( ≠ ).若樣本(x1 , x2…,xn , y1 , y2 , …,ym)的平均數(shù) =α +(1﹣α) ,其中0<α< ,則n,m的大小關(guān)系為( )
A.n<m
B.n>m
C.n=m
D.不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com