已知等比數(shù)列{an}的各項均為正數(shù),且a1+2a2=1,a
23
=4a2a6
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log2a1+log2a2+…+log2an,求數(shù)列{
1
bn
}的前n項和.
(1)設(shè)等比數(shù)列{an}的公比為q,由a
23
=4a2a6得a
23
=4
a24

∴q2=
1
4
,由已知an>0,∴q=
1
2
,
由a1+2a2=1,得2a1=1,∴a1=
1
2
,
∴數(shù)列{an}的通項公式為an=
1
2n

(2)bn=log2a1+log2a2+…+log2an=-(1+2+…+n)=-
n(n+1)
2

1
bn
=-
2
n(n+1)
=-2(
1
n
-
1
n+1
),
∴數(shù)列{
1
bn
}的前n項和=-2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=-
2n
n+1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列{an}通項公式為an=
1
n(n+1)
,則數(shù)列{an}的前5項和為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列an=
1
3n-1
,其前n項和為Sn=
n
k-1
ak,則Sk+1與Sk的遞推關(guān)系不滿足( 。
A.Sk+1=Sk+
1
3k+1
B.Sk+1=1+
1
3
Sk
C.Sk+1=Sk+ak+1D.Sk+1=3Sk-3+ak+ak+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}的前n項和為Sn,a1=2,Sn=
1
2
an+1-1
(n∈N*).
(Ⅰ)求a2,a3;
(Ⅱ)求數(shù)列{an}的通項an
(Ⅲ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}的首項a1=4,公差d>0,且a1,a5,a21分別是正數(shù)等比數(shù)列{bn}的b3,b5b7項.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{cn}對任意n*均有
c1
b1
+
c2
b2
+
+
cn
bn
=an+1
成立,設(shè){cn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}滿足a3=6,a4+a6=20
(1)求通項an;
(2)設(shè){bn-an}是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項公式及其前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

通項公式為an=
2
n(n+1)
的數(shù)列{an}的前n項和為
9
5
,則項數(shù)n為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列{an}滿足an+an+1=
1
2
,a2=1,Sn為前n項和,則S21的值為(  )
A.4B.4.5C.5D.5.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)項數(shù)均為k(k≥2,k∈N*)的數(shù)列{an}、{bn}、{cn}前n項的和分別為Sn、Tn、Un.已知:an-bn=2n(1≤n≤k,n∈N*),且集合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k-2,4k}.
(1)已知Un=2n+2n,求數(shù)列{cn}的通項公式;
(2)若k=4,求S4和T4的值,并寫出兩對符合題意的數(shù)列{an}、{bn};
(3)對于固定的k,求證:符合條件的數(shù)列對({an},{bn})有偶數(shù)對.

查看答案和解析>>

同步練習(xí)冊答案