(本小題13分)已知函數(shù)

(1)若實數(shù)求函數(shù)上的極值;

(2)記函數(shù),設函數(shù)的圖像軸交于點,曲線點處的切線與兩坐標軸所圍成圖形的面積為則當時,求的最小值.

 

【答案】

(1)有極小值.(2)2.

【解析】

試題分析:(1)求函數(shù)的導數(shù),然后確定函數(shù)f(x)的單調區(qū)間,在進一步求出極值即可.

(2)求出g(x)的解析式,求出P(0,1+a),由導數(shù)的幾何意義求出P點處的斜率,在求出切線方程,寫出S(a)的表達式,由基本不等式的性質求其最小值即可.

試題解析:(1)

時,由

,則,所以恒成立,

所以單調遞增,無極值。

,則單調遞減;

單調遞增。

所以有極小值。

(2)=

,即

點處切線斜率:

點處切線方程:

,令

所以

當且僅當

考點:1.求函數(shù)的導數(shù)和導數(shù)的幾何意義;2.利用導數(shù)求函數(shù)的單調區(qū)間;3.基本不等式的性質.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011屆北京市東城區(qū)示范校高三第二學期綜合練習數(shù)學文卷 題型:解答題

(本小題13分)已知向量,
(1)當時,求的值;
(2)求上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年北京市示范校高三12月綜合練習(一)文科數(shù)學 題型:解答題

(本小題13分)

已知等比數(shù)列滿足,且,的等差中項.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,,求使  成立的正整數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年福建省高一上學期期末考試數(shù)學理卷 題型:解答題

(本小題13分)

已知直線過直線的交點;

(Ⅰ)若直線與直線 垂直,求直線的方程.

(Ⅱ)若原點到直線的距離為1.求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省協(xié)作體高三第二次聯(lián)考數(shù)學理卷 題型:解答題

(本小題13分)

已知拋物線方程為,過作直線.

①若軸不垂直,交拋物線于A、B兩點,是否存在軸上一定點,使得?若存在,求出m的值;若不存在,請說明理由?

②若軸垂直,拋物線的任一切線與軸和分別交于M、N兩點,則自點M到以QN為直徑的圓的切線長為定值,試證之;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年北京市東城區(qū)示范校高三第二學期綜合練習數(shù)學文卷 題型:解答題

(本小題13分)已知向量

(1)當時,求的值;

(2)求上的值域.

 

查看答案和解析>>

同步練習冊答案