【題目】手機完全充滿電量,在開機不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時間稱為手機的待機時間。
為了解A,B兩個不同型號手機的待機時間,現(xiàn)從某賣場庫存手機中隨機抽取A,B兩個型號的手機各5臺,在相同條件下進行測試,統(tǒng)計結(jié)果如下:
手機編號 | 1 | 2 | 3 | 4 | 5 |
A型待機時間(h) | 120 | 125 | 122 | 124 | 124 |
B型待機時間(h) | 118 | 123 | 127 | 120 | a |
已知A,B兩個型號被測試手機待機時間的平均值相等。
(Ⅰ)求a的值;
(Ⅱ)求A型號被測試手機待機時間方差和標準差的大小;
(Ⅲ)從被測試的手機中隨機抽取A,B型號手機各1臺,求至少有1臺的待機時間超過122小時的概率。
(注:n個數(shù)據(jù)…的方差…,其中為數(shù)據(jù)…的平均數(shù))
【答案】(1).
(2);.
(3).
【解析】分析:(1)先根據(jù)平均數(shù)公式求平均數(shù),再根據(jù)等量關(guān)系求a,(2)根據(jù)方差公式以及標準差公式求結(jié)果,(3)先確定總事件數(shù),再求對立事件:兩臺待機時間不超過122小時的事件數(shù),進而確定至少有1臺的待機時間超過122小時的事件數(shù),最后根據(jù)古典概型概率公式求概率
詳解:(Ⅰ),
,
由,解得。
(Ⅱ)設(shè)A型號被測試手機的待機時間的方差為,
則…
標準差
(Ⅲ)設(shè)A型號手機為A1,A2,A3,A4,A5;B型號手機為B1,B2,B3,B4,B5,從被測試的手機中隨機抽取A,B型號手機各1臺,不同的抽取方法有25種.
事件C:“至少有1臺的待機時間超過122小時”
事件:“抽取的兩臺手機待機時間都不超過122小時”的選法有:(A1,B1),(A1,B4),(A3,B1),(A3,B4),共4種.
因此,所以。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}(n∈N*)滿足:a1=1,an+1-sin2θ·an=cos 2θ·cos2nθ,其中θ∈.
(1)當(dāng)θ=時,求數(shù)列{an}的通項公式;
(2)在(1)的條件下,若數(shù)列{bn}滿足bn=sin+cos (n∈N*,n≥2),且b1=1,求證:對任意的n∈N*,1≤bn≤恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{ 滿足 , .
(1)求證:數(shù)列 是等比數(shù)列;
(2)若數(shù)列 是單調(diào)遞增數(shù)列,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底).若函數(shù)g(x)=f(x)﹣kx恰好有兩個零點,則實數(shù)k的取值范圍是( )
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 ,直線 與 交于 , 兩點,且 ,其中 為坐標原點.
(1)求拋物線 的方程;
(2)已知點 的坐標為(-3,0),記直線 、 的斜率分別為 , ,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天時間與水深(單位:米)的關(guān)系表:
時刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
水深 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)請用一個函數(shù)來近似描述這個港口的水深y與時間t的函數(shù)關(guān)系;
(2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認為是安全的(船舶?繒r,船底只要不碰海底即可)。某船吃水深度(船底離地面的距離)為6.5米。
Ⅰ)如果該船是旅游船,1:00進港希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?
Ⅱ)如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風(fēng)等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點時刻必須停止卸貨(忽略出港所需時間)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率e= ,右頂點、上頂點分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為
(1)求橢圓C的方程;
(2)設(shè)過點B且斜率為k的動直線l與橢圓C的另一個交點為M, =λ( ),若點N在圓O上,求正實數(shù)λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com