【題目】如圖,在平面四邊形ABCD中,已知A,B,AB6.AB邊上取點(diǎn)E,使得BE1,連接EC,ED.若∠CEDEC.

(1)sinBCE的值;

(2)CD的長(zhǎng).

【答案】(1) (2)7

【解析】

1)在三角形中,利用正弦定理求得.

2)證得,結(jié)合(1)中的值,求得的值,在直角三角形中求得的值,在三角形中,利用余弦定理求得.

(1)在△BEC中,由正弦定理,知,

因?yàn)?/span>B,BE1CE,

所以sinBCE.

(2)因?yàn)椤?/span>CEDB,所以∠DEA=∠BCE,

所以cosDEA.

因?yàn)?/span>,所以△AED為直角三角形,又AE5,

所以ED2.

在△CED中,CD2CE2DE22CE·DE·cosCED728×2×49.

所以CD7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn),點(diǎn)為拋物線(xiàn)上的動(dòng)點(diǎn),則取到最小值時(shí)點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中.

(1)若,求函數(shù)在處的切線(xiàn)方程;

(2)討論的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

(1)中點(diǎn),在線(xiàn)段上是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量, ,設(shè)函數(shù),且的圖象過(guò)點(diǎn)和點(diǎn).

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個(gè)單位后得到函數(shù)的圖象.若的圖象上各最高點(diǎn)到點(diǎn)的距離的最小值為1,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直(其中為自然對(duì)數(shù)的底數(shù)).

(I)求的解析式及單調(diào)遞減區(qū)間;

(II)若存在 ,使函數(shù)成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地舉辦科技博覽會(huì),有個(gè)場(chǎng)館,現(xiàn)將個(gè)志愿者名額分配給這個(gè)場(chǎng)館,要求每個(gè)場(chǎng)館至少有一個(gè)名額且各場(chǎng)館名額互不相同的分配方法共有( )種

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn),滿(mǎn)足:,,則的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知圓Cx2+y2-4x=0及點(diǎn)A-1,0),B1,2

1)若直線(xiàn)l平行于AB,與圓C相交于M,N兩點(diǎn),MN=AB,求直線(xiàn)l的方程;

2)若圓C上存在兩個(gè)點(diǎn)P,使得PA2+PB2=aa4),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案