【題目】某幾何體的三視圖如下圖,則該幾何體的體積為( )
A. 18 B. 20 C. 24 D. 12
【答案】B
【解析】由三視圖可得如下圖所示幾何體,它為長(zhǎng)寬高為4,3,2的長(zhǎng)方體沿對(duì)角線去掉一半且去掉一個(gè)三棱錐的幾何體,其體積.
故本題正確答案為B.
點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長(zhǎng)對(duì)正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長(zhǎng)是幾何體的長(zhǎng);俯視圖的長(zhǎng)是幾何體的長(zhǎng),寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫(huà)出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫(huà)出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫(huà)出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是公差為1的等差數(shù)列,a1 , a5 , a25成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= 3+an , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若過(guò)點(diǎn)恰有兩條直線與曲線相切,求的值;
(Ⅱ)用表示中的最小值,設(shè)函數(shù),若恰有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東莞市某高級(jí)中學(xué)在今年4月份安裝了一批空調(diào),關(guān)于這批空調(diào)的使用年限(單位:年, )和所支出的維護(hù)費(fèi)用(單位:萬(wàn)元)廠家提供的統(tǒng)計(jì)資料如下:
(1)請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護(hù)費(fèi)用關(guān)于的線性回歸方程;
(2)若規(guī)定當(dāng)維護(hù)費(fèi)用超過(guò)13.1萬(wàn)元時(shí),該批空調(diào)必須報(bào)廢,試根據(jù)(1)的結(jié)論預(yù)測(cè)該批空調(diào)使用年限的最大值.
參考公式:最小二乘估計(jì)線性回歸方程中系數(shù)計(jì)算公式:
, ,其中表示樣本均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),().
(1)討論的單調(diào)性;
(2)設(shè), ,若()是的兩個(gè)零點(diǎn),且,
試問(wèn)曲線在點(diǎn)處的切線能否與軸平行?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的前k項(xiàng)和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若圓經(jīng)過(guò)點(diǎn)(2,0),(0,4),(0,2)求:
(1)圓的方程
(2)圓的圓心和半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克, 原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是__________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且, ,在數(shù)列中, , , .
(1)求證: 是等比數(shù)列;
(2)若,求數(shù)列的前項(xiàng)和;
(3)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com