【題目】在如圖所示的幾何體中,四邊形是等腰梯形,,.在梯形中,,且,,平面.
(Ⅰ)求證:.
(II)求四棱錐與三棱錐體積的比值.
【答案】(Ⅰ)見解析.(Ⅱ).
【解析】
(Ⅰ)在△ABC中,由已知結(jié)合余弦定理求解AC,再由勾股定理得到BC⊥AC.由EC⊥平面ABCD,得EC⊥BC,再由線面垂直的判定可得BC⊥平面ACEF,進一步得到BC⊥AF;
(Ⅱ)由(Ⅰ)知∠CAB=30°,結(jié)合四邊形ABCD為等腰梯形,且∠ABC=60°,得到∠CAD=∠ACD=30°,求得點D到平面ACEF距離為,分別求出四棱錐D﹣ACFE與三棱錐A﹣BCF的體積,則答案可求.
(I)證明:在中,
所以,由勾股定理知:,故
又因為平面,平面,所以,而,所以平面,又平面,所以
(II)由(I)知:在中,,又∵四邊形為等腰梯形,且,則
作因為平面,平面,
則平面平面,
又平面平面,平面,故平面
又,則,
又,
∴,
綜上所述:四棱錐與三棱錐體積比值是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的一個頂點為,焦點在x軸上,若橢圓的右焦點到直線的距離是3.
求橢圓E的方程;
設(shè)過點A的直線l與該橢圓交于另一點B,當(dāng)弦AB的長度最大時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了治療某種疾病,研制了甲、乙兩種新藥,希望知道哪種新藥更有效,為此進行動物試驗.試驗方案如下:每一輪選取兩只白鼠對藥效進行對比試驗.對于兩只白鼠,隨機選一只施以甲藥,另一只施以乙藥.一輪的治療結(jié)果得出后,再安排下一輪試驗.當(dāng)其中一種藥治愈的白鼠比另一種藥治愈的白鼠多4只時,就停止試驗,并認(rèn)為治愈只數(shù)多的藥更有效.為了方便描述問題,約定:對于每輪試驗,若施以甲藥的白鼠治愈且施以乙藥的白鼠未治愈則甲藥得1分,乙藥得分;若施以乙藥的白鼠治愈且施以甲藥的白鼠未治愈則乙藥得1分,甲藥得分;若都治愈或都未治愈則兩種藥均得0分.甲、乙兩種藥的治愈率分別記為α和β,一輪試驗中甲藥的得分記為X.
(1)求的分布列;
(2)若甲藥、乙藥在試驗開始時都賦予4分,表示“甲藥的累計得分為時,最終認(rèn)為甲藥比乙藥更有效”的概率,則,,,其中,,.假設(shè),.
(i)證明:為等比數(shù)列;
(ii)求,并根據(jù)的值解釋這種試驗方案的合理性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線經(jīng)過點,兩條漸近線的夾角為,直線交雙曲線于、.
(1)求雙曲線的方程;
(2)若過原點,為雙曲線上異于、的一點,且直線、的斜率為、,證明:為定值;
(3)若過雙曲線的右焦點,是否存在軸上的點,使得直線繞點無論怎樣轉(zhuǎn)動,都有成立?若存在,求出的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,,分別為橢圓的左,右焦點,橢圓上點的橫坐標(biāo)等于右焦點的橫坐標(biāo),其縱坐標(biāo)等于短半軸長的,則橢圓的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由矩形和菱形組成的一個平面圖形,其中, ,將其沿折起使得與重合,連結(jié),如圖2.
(1)證明圖2中的四點共面,且平面平面;
(2)求圖2中的四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線的斜率為1的切線方程;
(Ⅱ)當(dāng)時,求證:;
(Ⅲ)設(shè),記在區(qū)間上的最大值為M(a),當(dāng)M(a)最小時,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com