在區(qū)間
上的最大值是( )
試題分析:由題意先對(duì)函數(shù)y進(jìn)行求導(dǎo),解出極值點(diǎn),然后再根據(jù)函數(shù)的定義域,把極值點(diǎn)和區(qū)間端點(diǎn)值代入已知函數(shù),判斷函數(shù)在區(qū)間上的增減性,比較函數(shù)值的大小,求出最大值,從而求解
解:f'(x)=3x2-6x=3x(x-2),令f'(x)=0可得x=0或2(2舍去),當(dāng)-1<x<0時(shí),f'(x)>0,當(dāng)0<x<1時(shí),f'(x)<0,∴當(dāng)x=0時(shí),f(x)取得最大值為f(0)=2.故選C
點(diǎn)評(píng):解決的關(guān)鍵是利用導(dǎo)數(shù)的符號(hào)判定函數(shù)單調(diào)性,并能結(jié)合極值得到最值,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
,且對(duì)于任意實(shí)數(shù)
,恒有
.
(1)求函數(shù)
的解析式;
(2)函數(shù)
有幾個(gè)零點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
函數(shù)
具有下列特征:
,則
的圖形可以是下圖中的( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
在
處取得極值.
(1)求實(shí)數(shù)
的值;
(2)若關(guān)于
的方程
在區(qū)間
上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(3)證明:對(duì)任意的正整數(shù)
,不等式
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
若不等式
對(duì)任意
都成立,則實(shí)數(shù)a取值范圍是
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)
在點(diǎn)
處的切線為
,直線
與
軸相交于點(diǎn)
.若點(diǎn)
的縱坐標(biāo)恒小于1,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
(Ⅰ)若
,求
的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)
≥0時(shí)
≥0,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
的零點(diǎn)的集合為{0,1},且
是f(x)的一個(gè)極值點(diǎn)。
(1)求
的值;
(2)試討論過(guò)點(diǎn)P(m,0)與曲線y=f(x)相切的直線的條數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
命題“
”的否定是( )
查看答案和解析>>