【題目】如圖所示的分?jǐn)?shù)三角形,稱為“萊布尼茨三角形”.這個(gè)三角形的規(guī)律是:各行中的每一個(gè)數(shù),都等于后面一行中與它相鄰的兩個(gè)數(shù)之和(例如第4行第2個(gè)數(shù) 等于第5行中的第2個(gè)數(shù) 與第3個(gè)數(shù) 之和).則
在“萊布尼茨三角形”中,第10行從左到右第2個(gè)數(shù)到第8個(gè)數(shù)中各數(shù)的倒數(shù)之和為(

A.5010
B.5020
C.10120
D.10130

【答案】B
【解析】解:將楊暉三角形中的每一個(gè)數(shù)Cnr都換成分?jǐn)?shù) ,就得到萊布尼茨三角形.
∵楊暉三角形中第n(n≥2)行第m個(gè)數(shù)字是Cn1 m1 ,
∴第10行從左到右第2個(gè)數(shù)到第8個(gè)數(shù)中各數(shù)的倒數(shù)之和為10(C91+C92+…+C97)=5020
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解歸納推理的相關(guān)知識(shí),掌握根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)甲、乙的學(xué)習(xí)成績(jī)進(jìn)行抽樣分析,各抽五門功課,得到的觀測(cè)值如表:

60

80

70

90

70

80

60

70

80

75

問(wèn):甲、乙誰(shuí)的平均成績(jī)較好?誰(shuí)的各門功課發(fā)展較平衡?(
A.甲的平均成績(jī)較好,乙的各門功課發(fā)展較平衡
B.甲的平均成績(jī)較好,甲的各門功課發(fā)展較平衡
C.乙的平均成績(jī)較好,甲的各門功課發(fā)展較平衡
D.乙的平均成績(jī)較好,乙的各門功課發(fā)展較平衡

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ex (e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)x∈(﹣1,+∞)時(shí),證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣ x2+(a﹣1)x+lnx.
(1)若a>﹣1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)= x2+(1﹣2a)x+f(x)有且只有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)要抽查某企業(yè)生產(chǎn)的某種品牌的袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從700袋牛奶中抽取50袋進(jìn)行檢驗(yàn).利用隨機(jī)數(shù)表抽取樣本時(shí),先將700袋牛奶按001,002,…,700進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第3行第1組數(shù)開(kāi)始向右讀,最先讀到的5袋牛奶的編號(hào)是614,593,379,242,203,請(qǐng)你以此方式繼續(xù)向右讀數(shù),隨后讀出的3袋牛奶的編號(hào)是 . (下列摘取了隨機(jī)數(shù)表第1行至第5行)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市在對(duì)學(xué)生的綜合素質(zhì)評(píng)價(jià)中,將其測(cè)評(píng)結(jié)果分為“優(yōu)秀、合格、不合格”三個(gè)等級(jí),其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”.
(1)某校高二年級(jí)有男生500人,女生400人,為了解性別對(duì)該綜合素質(zhì)評(píng)價(jià)結(jié)果的影響,采用分層抽樣的方法從高二學(xué)生中抽取了90名學(xué)生的綜合素質(zhì)評(píng)價(jià)結(jié)果,其各個(gè)等級(jí)的頻數(shù)統(tǒng)計(jì)如表:

等級(jí)

優(yōu)秀

合格

不合格

男生(人)

30

x

8

女生(人)

30

6

y

根據(jù)表中統(tǒng)計(jì)的數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“綜合素質(zhì)評(píng)價(jià)測(cè)評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”?

男生

女生

總計(jì)

優(yōu)秀

非優(yōu)秀

總計(jì)

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(2)以(1)中抽取的90名學(xué)生的綜合素質(zhì)評(píng)價(jià)等級(jí)的頻率作為全市各個(gè)評(píng)價(jià)等級(jí)發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨(dú)立,現(xiàn)從該市高二學(xué)生中隨機(jī)抽取4人.
(i)求所選4人中恰有3人綜合素質(zhì)評(píng)價(jià)為“優(yōu)秀”的概率;
(ii)記X表示這4人中綜合素質(zhì)評(píng)價(jià)等級(jí)為“優(yōu)秀”的人數(shù),求X的數(shù)學(xué)期望.
附:參考數(shù)據(jù)與公式
參考公式:K2= ,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某學(xué)校組織的一次智力競(jìng)賽中,比賽共分為兩個(gè)環(huán)節(jié),其中第一環(huán)節(jié)競(jìng)賽題有A、B兩組題,每個(gè)選手最多有3次答題機(jī)會(huì),答對(duì)一道A組題得20分,答對(duì)一道B組題得30分.選手可以任意選擇答題的順序,如果前兩次得分之和超過(guò)30分即停止答題,進(jìn)入下一環(huán)節(jié)比賽,否則答3次.某同學(xué)正確回答A組題的概率都是p,正確回答B(yǎng)組題的概率都是 ,且回答正確與否相互之間沒(méi)有影響.該同學(xué)選擇先答一道B組題,然后都答A組題.已知第一環(huán)節(jié)比賽結(jié)束時(shí)該同學(xué)得分超過(guò)30分的概率為
(1)求p的值;
(2)用ξ表示第一環(huán)節(jié)比賽結(jié)束后該同學(xué)的總得分,求隨機(jī)變量ξ的數(shù)學(xué)期望;
(3)試比較該同學(xué)選擇都回答A組題與選擇上述方式答題,能進(jìn)入下一環(huán)節(jié)競(jìng)賽的概率的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R).
(1)若函數(shù)y=f(x)的零點(diǎn)為﹣1和1,求實(shí)數(shù)b,c的值;
(2)若f(x)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個(gè)實(shí)數(shù)根分別在區(qū)間(﹣3,﹣2),(0,1)內(nèi),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) 個(gè)正數(shù) 滿足 ).
(1)當(dāng) 時(shí),證明:
(2)當(dāng) 時(shí),不等式 也成立,請(qǐng)你將其推廣到 )個(gè)正數(shù) 的情形,歸納出一般性的結(jié)論并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案