【題目】已知向量 =(cosx+sinx,1), =(cosx+sinx,﹣1)函數(shù)g(x)=4
(1)求函數(shù)g(x)在[ , ]上的值域;
(2)若x∈[0,2016π],求滿足g(x)=0的實(shí)數(shù)x的個數(shù);
(3)求證:對任意λ>0,都存在μ>0,使g(x)+x﹣4<0對x∈(﹣∞,λμ)恒成立.

【答案】
(1)解:向量 =(cosx+sinx,1), =(cosx+sinx,﹣1),

∴函數(shù)g(x)=4 =4sin2x.

∵x∈[ ],

∴2x∈[ ],

∴sin2x∈[ ,1],

∴g(x)∈[2,4];


(2)解:g(x)=0,可得x= ,k∈Z,

∵x∈[0,2016π],∴ ∈[0,2016π],∴k∈[0,4032],

∴k的值有4033個,即x有4033個;


(3)證明:不等式g(x)+x﹣4<0,即 g(x)<4﹣x,

故函數(shù)g(x)的圖象位于直線y=4﹣x的下方.

顯然,當(dāng)x≤0時,函數(shù)g(x)的圖象位于直線y=4﹣x的下方.

當(dāng)x∈(0, ]時,g(x)單調(diào)遞增,g( )=2,顯然g( )<4﹣ ,

即函數(shù)g(x)的圖象位于直線y=4﹣x的下方.

綜上可得,當(dāng)x≤ 時,函數(shù)g(x)的圖象位于直線y=4﹣x的下方.

對任意λ>0,一定存在μ= >0,使λμ= ,滿足函數(shù)g(x)的圖象位于直線y=4﹣x的下方.


【解析】(1)求出函數(shù)解析式,即可求函數(shù)g(x)在[ , ]上的值域;(2)g(x)=0,可得x= ,k∈Z,利用x∈[0,2016π],求滿足g(x)=0的實(shí)數(shù)x的個數(shù);(3)分類討論,可得當(dāng)x≤ 時,函數(shù)f(x)的圖象位于直線y=4﹣x的下方,由此證得結(jié)論成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax﹣b(a>0且a≠1)的圖象如圖1所示,則函數(shù)y=cosax+b的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線y=1+ 與直線kx﹣y﹣2k+5=0有兩個交點(diǎn)時,實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對邊,若
(1)求角A的大;
(2)已知 ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)奇函數(shù)f(x)在區(qū)間[﹣7,﹣3]上是減函數(shù)且最大值為﹣5,函數(shù)g(x)= ,其中a<
(1)判斷并用定義法證明函數(shù)g(x)在(﹣2,+∞)上的單調(diào)性;
(2)求函數(shù)F(x)=f(x)+g(x)在區(qū)間[3,7]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x+sin|x|,x∈[﹣π,π]的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的離心率為 ,以E的四個頂點(diǎn)為頂點(diǎn)的四邊形的面積為4 . (Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A,B分別為橢圓E的左、右頂點(diǎn),P是直線x=4上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M、N,試探究,點(diǎn)B是否在以MN為直徑的圓內(nèi)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=﹣x與直線y=k(x+1)相交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)△OAB的面積等于 時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐A﹣BCD中,△ABD,△BCD均為正三角形,且平面ABD⊥平面BCD,點(diǎn)O,M分別為棱BD,AC的中點(diǎn),則異面直線AB與OM所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案