定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-1,0]上單調(diào)遞增,a=f(3),b=f(
2
),c=f(2),則a,b,c大小關(guān)系是( 。
A、a>b>c
B、a>c>b
C、b>c>a
D、c>b>a
分析:先根據(jù)條件推斷出函數(shù)為以2為周期的函數(shù),根據(jù)f(x)是偶函數(shù),在[-1,0]上單調(diào)遞增推斷出在[0,1]上是減函數(shù).減函數(shù),進(jìn)而利用周期性使a=f(1),b=f(2-
2
),c=f(2)=f(0)進(jìn)而利用自變量的大小求得函數(shù)的大小,則a,b,c的大小可知.
解答:解:由條件f(x+1)=-f(x),可以得:
f(x+2)=f((x+1)+1)=-f(x+1)=f(x),所以f(x)是個(gè)周期函數(shù).周期為2.
又因?yàn)閒(x)是偶函數(shù),所以圖象在[0,1]上是減函數(shù).
a=f(3)=f(1+2)=f(1),
b=f(
2
)=f(
2
-2)=f(2-
2

c=f(2)=f(0)
0<2-
2
<1
所以a<b<c
故選D
點(diǎn)評(píng):本題主要考查了函數(shù)單調(diào)性,周期性和奇偶性的應(yīng)用.考查了學(xué)生分析和推理的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x)是最小正周期為π的周期函數(shù),且當(dāng)x∈[0,
π
2
]
時(shí),f(x)=sinx,則f(
3
)
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、定義在R上的偶函數(shù)f(x),當(dāng)x≥0時(shí)有f(2+x)=f(x),且x∈[0,2)時(shí),f(x)=2x-1,則f(2010)+f(-2011)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x),滿足f(x+2)=f(x),且f(x)在[-3,-2]上是減函數(shù),若α、β是銳角三角形中兩個(gè)不相等的銳角,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個(gè)命題:
①f(x)是周期函數(shù);
②f(x)的圖象關(guān)于x=l對(duì)稱;
③f(x)在[l,2l上是減函數(shù);
④f(2)=f(0),
其中正確命題的序號(hào)是
①②④
①②④
.(請(qǐng)把正確命題的序號(hào)全部寫出來(lái))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知定義在R上的偶函數(shù)f(x).當(dāng)x≥0時(shí),f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函數(shù)f(x)的解析式并畫出函數(shù)的圖象;
(Ⅱ)寫出函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案