【題目】已知函數(shù)f(x)=|x+1|﹣|2x﹣3|.

(Ⅰ)在圖中畫出y=f(x)的圖象;
(Ⅱ)求不等式|f(x)|>1的解集.

【答案】解:(Ⅰ)f(x)= ,

由分段函數(shù)的圖象畫法,可得f(x)的圖象,如下:

(Ⅱ)由|f(x)|>1,可得

當(dāng)x≤﹣1時,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;

當(dāng)﹣1<x< 時,|3x﹣2|>1,解得x>1或x<

即有﹣1<x< 或1<x< ;

當(dāng)x≥ 時,|4﹣x|>1,解得x>5或x<3,即有x>5或 ≤x<3.

綜上可得,x< 或1<x<3或x>5.

則|f(x)|>1的解集為(﹣∞, )∪(1,3)∪(5,+∞).


【解析】(Ⅰ)運用分段函數(shù)的形式寫出f(x)的解析式,由分段函數(shù)的畫法,即可得到所求圖象;(Ⅱ)分別討論當(dāng)x≤﹣1時,當(dāng)﹣1<x< 時,當(dāng)x≥ 時,解絕對值不等式,取交集,最后求并集即可得到所求解集.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 的圖象與函數(shù)g(x)=log2(x+a)(a∈R)的圖象恰有一個交點,則實數(shù)a的取值范圍是( )
A.a>1
B.a≤﹣
C.a≥1或a<﹣
D.a>1或a≤﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知1丈為10尺,該鍥體的三視圖如圖所示,則該鍥體的體積為(
A.10000立方尺
B.11000立方尺
C.12000立方尺
D.13000立方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)正實數(shù)x,y,z滿足x2﹣3xy+4y2﹣z=0.則當(dāng) 取得最大值時, 的最大值為(
A.0
B.1
C.
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(1)求f(x)的單調(diào)區(qū)間及最大值;
(2)討論關(guān)于x的方程|lnx|=f(x)根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題函數(shù)內(nèi)恰有一個零點;命題函數(shù)上是減函數(shù),若為真命題,則實數(shù)的取值范圍是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是(
A.(4,2018)
B.(4,2020)
C.(3,2020)
D.(2,2020)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足csinA=acosC
(1)求角C大小;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時角A,B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,則該算法的功能是(
A.計算數(shù)列{2n1}前5項的和
B.計算數(shù)列{2n﹣1}前6項的和
C.計算數(shù)列{2n﹣1}前5項的和
D.計算數(shù)列{2n1}前6項的和

查看答案和解析>>

同步練習(xí)冊答案