【題目】函數(shù)f(x)= 其中t>0,若函數(shù)g(x)=f[f(x)﹣1]有6個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是 .
【答案】(3,4)
【解析】解:∵函數(shù)f(x)= 其中t>0,
∴函數(shù)f′(x)= ,
當(dāng)x< ,或x<t時(shí),f′(x)>0,函數(shù)為增函數(shù),
當(dāng) <x<t時(shí),f′(x)<0,函數(shù)為減函數(shù),
故當(dāng)x= 時(shí),函數(shù)f(x)取極大值 t3,
函數(shù)f(x)有兩個(gè)零點(diǎn)0和t,
若函數(shù)g(x)=f(f(x)﹣1)恰有6個(gè)不同的零點(diǎn),
則方程f(x)﹣1=0和f(x)﹣1=t各有三個(gè)解,
即函數(shù)f(x)的圖象與y=1和y=t+1各有三個(gè)零點(diǎn),
由y|x=t= x= ,
故 ,
t3﹣t﹣1= (t﹣3)(2t+3)2>0得:t>3,
故不等式的解集為:t∈(3,4),
所以答案是:(3,4)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}定義為a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)當(dāng)a>0時(shí),定義數(shù)列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整數(shù)i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一組(i,j),如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A、B兩點(diǎn),M是AB 的中點(diǎn),過M作x 軸的垂線交C于N點(diǎn).
(Ⅰ)證明:拋物線C在N 點(diǎn)處的切線與AB 平行;
(Ⅱ)是否存在實(shí)數(shù)k,使以AB為直徑的圓M經(jīng)過N點(diǎn)?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)求函數(shù)f(x)的值域;
(2)已知銳角△ABC的兩邊長a,b分別為函數(shù)f(x)的最小值與最大值,且△ABC的外接圓半徑為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線l的普通方程為x﹣y﹣2=0,曲線C的參數(shù)方程為 (θ為參數(shù)),設(shè)直線l與曲線C交于A,B兩點(diǎn).若點(diǎn)P在曲線C上運(yùn)動,當(dāng)△PAB的面積最大時(shí),求點(diǎn)P的坐標(biāo)及△PAB的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記等差數(shù)列{an}的前n項(xiàng)和為Sn .
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)若a1=1,對任意的n∈N*,n≥2,均有 , , 是公差為1的等差數(shù)列,求使 為整數(shù)的正整數(shù)k的取值集合;
(3)記bn=a (a>0),求證: ≤ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn , 且a1a5=64,S5﹣S3=48.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)有正整數(shù)m,l(5<m<l),使得am , 5a5 , al成等差數(shù)列,求m,l的值;
(3)設(shè)k,m,l∈N*,k<m<1,對于給定的k,求三個(gè)數(shù) 5ak , am , al經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,角A,B,C所對的邊分別為a,b,c,且3bsinA=c,D為AC邊上一點(diǎn).
(1)若D是AC的中點(diǎn),且 , ,求△ABC的最短邊的邊長.
(2)若c=2b=4,S△BCD= ,求DC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量y(g)與尺寸x(mm)之間近似滿足關(guān)系式y(tǒng)=axb(a,b為大于0的常數(shù)).現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量(g) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
對數(shù)據(jù)作了初步處理,相關(guān)統(tǒng)計(jì)量的值如表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)根據(jù)所給數(shù)據(jù),求y關(guān)于x的回歸方程;
(Ⅱ)按照某項(xiàng)指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間( , )內(nèi)時(shí)為優(yōu)等品.現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記ξ為取到優(yōu)等品的件數(shù),試求隨機(jī)變量ξ的分布列和期望.
附:對于一組數(shù)據(jù)(v1 , u1),(v2 , u2),…,(vn , un),其回歸直線u=α+βv的斜率和截距的最小二乘估計(jì)分別為 = , = ﹣ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com