分析:(Ⅰ)當(dāng)n≥2時(shí),Sn=t(Sn-an+1),再寫一式,兩式相減,可得{an}是首項(xiàng)a1=t,公比等于t的等比數(shù)列,利用4a3是a1與2a2的等差中項(xiàng),即可求得結(jié)論;
(Ⅱ)由(Ⅰ),得bn=(2n+1)×2n,利用錯(cuò)位相減法,可求數(shù)列{bn}的前n項(xiàng)和Tn.
解答:解:(Ⅰ)當(dāng)n=1時(shí),S
1=t(S
1-a
1+1),所以a
1=t,
當(dāng)n≥2時(shí),S
n=t(S
n-a
n+1)①
S
n-1=t(S
n-1-a
n-1+1),②
①-②,得a
n=t•a
n-1,即
=t.
故{a
n}是首項(xiàng)a
1=t,公比等于t的等比數(shù)列,所以a
n=t
n,…(4分)
故
a2=t2,
a3=t3由4a
3是a
1與2a
2的等差中項(xiàng),可得8a
3=a
1+2a
2,即8t
3=t+2t
2,
因t>0,整理得8t
2-2t-1=0,解得t=
或t=-
(舍去),
所以t=
,故a
n=
.…(6分)
(Ⅱ)由(Ⅰ),得b
n=
=(2n+1)×2
n,
所以T
n=3×2+5×2
2+7×2
3+…+(2n-1)×2
n-1+(2n+1)×2
n,③
2T
n=3×2
2+5×2
3+7×2
4+…+(2n-1)×2
n+(2n+1)×2
n+1,④
③-④,得-T
n=3×2+2(2
2+2
3+…+2
n)-(2n+1)×2
n+1 …(8分)
=-2+2
n+2-(2n+1)×2
n+1=-2-(2n-1)×2
n+1…(11分)
所以T
n=2+(2n-1)×2
n+1.…(12分)
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查數(shù)列的通項(xiàng),考查錯(cuò)位相減法求數(shù)列的和,確定數(shù)列為等比數(shù)列是關(guān)鍵.