(本小題滿分12分)
在邊長為2的正方體中,EBC的中點,F的中點

(1)求證:CF∥平面
(2)求二面角的平面角的余弦值.

(1)根據(jù)線面平行的判定定理,結合CF∥OE ,來得到證明。
(2)

解析試題分析:解:(Ⅰ)取A’D的中點O,連接OF
∵點F為DD’的中點;
∴OF∥A’D’且OF=A’D’;
∴OF∥AD且OF=AD;                 2分
∵點E為BC的中點
∴EC∥AD且EC=AD;
∴OF∥EC且OF=EC;
∴四邊形OBCF為平行四邊形            .3分
∴CF∥OE
又FC面A’DE且OE面A’DE
∴CF∥面A’DE                       .6分
(Ⅱ)取AD的中點M,連接ME
過點M作MH⊥A’D,垂足為H點,連接HE
∵AB∥ME,又AB⊥面ADD’A’
∴ME⊥面ADD’A’
∵A’D面ADD’A’
∴ME⊥A’D
又ME⊥A’D,ME∩MH = M
∴A’D⊥面MHE
∵HE面MHE
∴A’D⊥HE
∴∠MHE是二面角E-A’D-A的平面角            .9分
在Rt△MHD中, sin∠A’DA =
∴MH =" sin" 45°=
在Rt△MHD中,tan∠MHE =
∴sin∠MHE =                      .12分
考點:空間中點線面的位置關系
點評:解決俄ud關鍵是對于線面平行的判定定理的運用,以及二面角的求解,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,⊥底面,點在棱上.

(1)求證:平面⊥平面;
(2)當的中點時,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,底面,,,的中點.

(Ⅰ)證明;
(Ⅱ)證明平面;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在三棱錐中,,,,, 點分別在棱上,且

(Ⅰ)求證:平面PAC
(Ⅱ)當的中點時,求與平面所成的角的正弦值;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知四棱錐的底面為平行四邊形,分別是棱的中點,平面與平面交于,求證:

(1)平面;
(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在中,點的中點,點的中點,的延長線交與點

(1)求的值;
(2)若的面積為,四邊形的面積為,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共12分)
在如圖的多面體中,⊥平面,,,,,,   的中點.

(Ⅰ)求證:平面;
(Ⅱ)求證:;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐的底面為菱形,且,
,的中點.

(Ⅰ)求證:平面;
(Ⅱ)求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,⊥平面,=90°,,點上,點E在BC上的射影為F,且

(1)求證:
(2)若二面角的大小為45°,求的值.

查看答案和解析>>

同步練習冊答案