已知圓C與直線l的極坐標方程分別為ρ=6cosθ,ρsin(θ+
π
4
)=
2
,求點C到直線l的距離是( 。
分析:先利用直角坐標與極坐標間的關系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得圓和直線的直角坐標方程,再在直角坐標系中算出圓心到直線距離即可.
解答:解:由ρ=6cosθ⇒ρ2=6ρcosθ⇒x2+y2-6x=0⇒(x-3)2+y2=9,
ρsin(θ+
π
4
)=
2
⇒ρcosθ+ρsinθ=2⇒x+y-2=0,
∴圓心C到直線距離為:
d=
|3+0-2|
2
=
2
2

故選D.
點評:本題考查點的極坐標和直角坐標的互化,能在極坐標系中用極坐標刻畫點的位置,體會在極坐標系和平面直角坐標系中刻畫點的位置的區(qū)別,能進行極坐標和直角坐標的互化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•九江一模)(1)(坐標系與參數(shù)方程選做題)
在直角坐標系xoy中,以原點為極點,x軸為非負半軸為極軸建立極坐標系,已知圓C與直線l的方程分別為:ρ=2sinθ,
x=x0+
2
t
y=
2
t
(t為參數(shù)).若圓C被直線l平分,則實數(shù)x0的值為
-1
-1

(2)(不等式選做題)
若關于x的不等式|xx-m|<2成立的充分不必要條件是2≤x≤3,則實數(shù)m的取值范圍是
(1,4)
(1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題(請考生在三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(A)(坐標系與參數(shù)方程選做題)在直角坐標系x0y中,以原點為極點,x軸非負半軸為極軸建立極坐標系,已知圓C與直線l的方程分別為:ρ=2sinθ,
x=x0+
2
t
y=
2
t
(t為參數(shù)).若圓C被直線l平分,則實數(shù)x0的值為
-1
-1

(B)(不等式選做題)若關于x的不等式|x-m|<2成立的充分不必要條件是2≤x≤3,則實數(shù)m的取值范圍是
(1,4)
(1,4)

(C) (幾何證明選講) 如圖,割線PBC經(jīng)過圓心O,OB=PB=1,OB繞點O逆時針旋轉120°到OD,連PD交圓O于點E,則PE=
3
7
7
3
7
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)(坐標系與參數(shù)方程選做題)
在直角坐標系xoy中,以原點為極點,x軸為非負半軸為極軸建立極坐標系,已知圓C與直線l的方程分別為:ρ=2sinθ,數(shù)學公式(t為參數(shù)).若圓C被直線l平分,則實數(shù)x0的值為________.
(2)(不等式選做題)
若關于x的不等式|xx-m|<2成立的充分不必要條件是2≤x≤3,則實數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省西安市西工大附中高考數(shù)學八模試卷(理科)(解析版) 題型:填空題

選做題(請考生在三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(A)(坐標系與參數(shù)方程選做題)在直角坐標系x0y中,以原點為極點,x軸非負半軸為極軸建立極坐標系,已知圓C與直線l的方程分別為:(t為參數(shù)).若圓C被直線l平分,則實數(shù)x的值為   
(B)(不等式選做題)若關于x的不等式|x-m|<2成立的充分不必要條件是2≤x≤3,則實數(shù)m的取值范圍是   
(C) (幾何證明選講) 如圖,割線PBC經(jīng)過圓心O,OB=PB=1,OB繞點O逆時針旋轉120°到OD,連PD交圓O于點E,則PE=   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年江西省九江市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

(1)(坐標系與參數(shù)方程選做題)
在直角坐標系xoy中,以原點為極點,x軸為非負半軸為極軸建立極坐標系,已知圓C與直線l的方程分別為:ρ=2sinθ,(t為參數(shù)).若圓C被直線l平分,則實數(shù)x的值為   
(2)(不等式選做題)
若關于x的不等式|xx-m|<2成立的充分不必要條件是2≤x≤3,則實數(shù)m的取值范圍是   

查看答案和解析>>

同步練習冊答案