如圖所示,在四邊形ABCD中,ADBC,ADAB,BCD45°,BAD90°,將ABD沿BD折起,使平面ABD平面BCD,構(gòu)成三棱錐ABCD,則在三棱錐ABCD中,下列命題正確的是(  )

A.平面ABD平面ABC B.平面ADC平面BDC

C.平面ABC平面BDC D.平面ADC平面ABC

 

D

【解析】由題意知,在四邊形ABCD中,CDBD.

在三棱錐ABCD中,平面ABD平面BCD,兩平面的交線為BD,

所以CD平面ABD,因此有ABCD.

又因為ABAD,ADDCD,所以AB平面ADC,于是得到平面ADC平面ABC.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷1練習(xí)卷(解析版) 題型:解答題

已知數(shù)列{an}的前n項和Snn2(nN*),等比數(shù)列{bn}滿足b1a1,2b3b4.

(1)求數(shù)列{an}{bn}的通項公式;

(2)cnan·bn(nN*),求數(shù)列{cn}的前n項和Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷5練習(xí)卷(解析版) 題型:解答題

已知橢圓C的中心在原點,一個焦點為F(0,),且長軸長與短軸長的比是1.

(1)求橢圓C的方程;

(2)若橢圓C上在第一象限的一點P的橫坐標(biāo)為1,過點P作傾斜角互補的兩條不同的直線PA,PB分別交橢圓C于另外兩點A,B,求證:直線AB的斜率為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷5練習(xí)卷(解析版) 題型:選擇題

已知點P(3,2)與點Q(1,4)關(guān)于直線l對稱,則直線l的方程為(  )

Axy10 Bxy0

Cxy10 Dxy0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷4練習(xí)卷(解析版) 題型:填空題

已知三棱錐PABC的各頂點均在一個半徑為R的球面上,球心OAB上,PO平面ABC,則三棱錐與球的體積之比為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷4練習(xí)卷(解析版) 題型:選擇題

一幾何體的三視圖如圖所示,則該幾何體的體積為(  )、

A200 B20018π

C140 D14018π

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷3練習(xí)卷(解析版) 題型:解答題

已知在遞增等差數(shù)列{an}中,a12,a1,a3,a7成等比數(shù)列,{bn}的前n項和為Sn,且Sn2n12.

(1)求數(shù)列{an}{bn}的通項公式;

(2)設(shè)cnabn,求數(shù)列{cn}的前n項和Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷2練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)sin2sin.

(1)ABC中,若sin C2sin AB為銳角且有f(B),求角AB,C

(2)f(x)(x0)的圖象與直線y交點的橫坐標(biāo)由小到大依次是x1,x2,xn,求數(shù)列{xn}的前2n項和,nN*.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷1練習(xí)卷(解析版) 題型:選擇題

命題a2b20,則a0b0”的逆否命題是(  )

A.若a2b2≠0,則a≠0b≠0 B.若a2b2≠0,則a≠0b≠0

C.若a0b0,則a2b2≠0 D.若a≠0b≠0,則a2b2≠0

 

查看答案和解析>>

同步練習(xí)冊答案