如圖所示,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.當A1、E、F、C1共面時,平面A1DE與平面C1DF所成二面角的余弦值為( )
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求證:AD⊥平面SBC;
(II)試在SB上找一點E,使得BC//平面ADE,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是矩形,平面,且,點是棱的中點,點在棱上移動.
(Ⅰ)當點為的中點時,試判斷直線與平面的關(guān)系,并說明理由;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖,四邊形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在線段PD上存在點E使得BE⊥CE,求線段AD的取值范圍,并求當線段PD上有且只
有一個點E使得BE⊥CE時,二面角E—BC—A正切值的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知中∠ACB=90°,AS=BC=1,AC=2,SA⊥面ABC,AD⊥SC于D,
(1)求證: AD⊥面SBC;
(2)求二面角A-SB-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別在A1D,AC上,且A1E=A1D,AF=AC,則( )
A.EF至多與A1D,AC之一垂直 |
B.EF⊥A1D,EF⊥AC |
C.EF與BD1相交 |
D.EF與BD1異面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在空間直角坐標系中,定義:平面α的一般方程為:Ax+By+Cz+D=0(A,B,C,D∈R,且A,B,C不同時為零),點到平面α的距離為:,則在底面邊長與高都為2的正四棱錐中,底面中心O到側(cè)面的距離等于( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在坐標平面xOy上,到點A(3,2,5),B(3,5,1)距離相等的點有( )
A.1個 | B.2個 | C.不存在 | D.無數(shù)個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com