(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為。
(Ⅰ)把的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求與交點的極坐標(biāo)()。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線L的參數(shù)方程是(t是參數(shù)).
(1)將曲線C的極坐標(biāo)方程和直線L參數(shù)方程轉(zhuǎn)化為普通方程;
(2)若直線L與曲線C相交于M、N兩點,且,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)取相同的長度單位,且以原點為極點,軸的非負(fù)半軸為極軸)中,曲線的方程為.
(Ⅰ)求曲線直角坐標(biāo)方程;
(Ⅱ)若曲線、交于A、B兩點,定點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立極坐標(biāo),曲線的極坐標(biāo)方程為(其中為常數(shù)).
(1)若曲線與曲線只有一個公共點,求的取值范圍;
(2)當(dāng)時,求曲線上的點與曲線上的點的最小距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線(t為參數(shù))經(jīng)過橢圓(為參數(shù))的左焦點F.
(Ⅰ)求m的值;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點,求|FA|·|FB|的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動點,Q都在曲線C:(β為參數(shù))上,對應(yīng)參數(shù)分別為
與(0<<2π),M為PQ的中點。
(Ⅰ)求M的軌跡的參數(shù)方程
(Ⅱ)將M到坐標(biāo)原點的距離d表示為的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點,參數(shù),點Q在曲線C:上.
(Ⅰ)求點P的軌跡方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)求點P與點Q之間的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
某醫(yī)療研究所為了檢驗新開發(fā)的流感疫苗對甲型H1N1流感的預(yù)防作用,把1000名注射了疫苗的人與另外1000名未注射疫苗的人的半年的感冒記錄作比較,提出假設(shè)H0:“這種疫苗不能起到預(yù)防甲型H1N1流感的作用”,并計算出,則下列說法正確的( )
A.這種疫苗能起到預(yù)防甲型H1N1流感的有效率為1% |
B.若某人未使用該疫苗,則他在半年中有99%的可能性得甲型H1N1 |
C.有1%的把握認(rèn)為“這種疫苗能起到預(yù)防甲型H1N1流感的作用” |
D.有99%的把握認(rèn)為“這種疫苗能起到預(yù)防甲型H1N1流感的作用” |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com