【題目】已知橢圓經(jīng)過兩點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過橢圓的右焦點的直線交橢圓兩點,且直線與以線段為直徑的圓交于另一點(異于點),若,求直線的斜率.

【答案】1;(2.

【解析】

1)將點兩點坐標代入橢圓方程,可得橢圓方程為;

2)由(1)得,依題意直線斜率不為0,設(shè)其方程為,求出以線段為直徑的圓的圓心到直線的距離,根據(jù)半徑、圓心距、弦長關(guān)系,求出,設(shè),可得,聯(lián)立直線方程和橢圓方程,根據(jù)根與系數(shù)關(guān)系,建立關(guān)于的方程,即可求解.

1,代入橢圓方程可得

,解得,

所以橢圓的方程為

2)由(1)得,依題意直線斜率不為0

設(shè)其方程為,

以線段為直徑的圓的圓心為,半徑為,

圓心到直線距離為

聯(lián)立,消去,

,設(shè),

,

,

整理得,

,

直線的斜率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中心在原點,焦點在軸上的橢圓,下頂點,且離心率.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)經(jīng)過點且斜率為的直線交橢圓于, 兩點.在軸上是否存在定點,使得恒成立?若存在,求出點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一個正四面體紙盒的俯視圖如圖所示,其中四邊形ABCD是邊長為的正方形,若在該正四面體紙盒內(nèi)放一個正方體,使正方體可以在紙盒內(nèi)任意轉(zhuǎn)動,則正方體棱長的最大值是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,分析的單調(diào)性.

2)若對,都有恒成立,求的取值范圍;

3)證明:對任意正整數(shù)均成立,其中為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù))

(1)若直線為曲線的一條切線,求實數(shù)的值;

(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)的取值范圍;

(3)設(shè),若在定義域上有極值點(極值點是指函數(shù)取得極值時對應(yīng)的自變量的值),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場統(tǒng)計了2008年到2018十一年間某種生活必需品的年銷售額及年銷售額增速圖,其中條形圖表示年(單位:萬元),折線圖年銷售額為年銷售額增長率(%).

1)由年銷售額圖判斷,從哪年開始連續(xù)三年的年銷售額方差最大?(結(jié)論不要求證明)

2)由年銷售額增長率圖,可以看出2011年銷售額增長率是最高的,能否表示當年銷售額增長最大?(結(jié)論不要求證明)

3)從2010年至2014年這五年中隨機選出兩年,求至少有一年年增長率超過20%的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當年考核優(yōu)秀,現(xiàn)獲得該公司2011-2018年的相關(guān)數(shù)據(jù)如下表所示:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年生產(chǎn)臺數(shù)(萬臺)

2

3

4

5

6

7

10

11

該產(chǎn)品的年利潤(百萬元)

2.1

2.75

3.5

3.25

3

4.9

6

6.5

年返修臺數(shù)(臺)

21

22

28

65

80

65

84

88

部分計算結(jié)果:,,

,

注:年返修率=

(1)從該公司2011-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學期望;

(2)根據(jù)散點圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(百萬元)關(guān)于年生產(chǎn)臺數(shù)(萬臺)的線性回歸方程(精確到0.01).

附:線性回歸方程中, ,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),

(1)用定義證明:函數(shù)是R上的增函數(shù);

(2)化簡,并求值:;

(3)若關(guān)于x的方程上有解,求k的取值范圍.

查看答案和解析>>

同步練習冊答案