【題目】高爾頓板是英國生物統(tǒng)計(jì)學(xué)家高爾頓設(shè)計(jì)用來研究隨機(jī)現(xiàn)象的模型,在一塊木板上釘著若干排相互平行但相互錯(cuò)開的圓柱形小木塊,小木塊之間留有適當(dāng)?shù)目障蹲鳛橥ǖ溃懊鎿跤幸粔K玻璃,讓一個(gè)小球從高爾頓板上方的通道口落下,小球在下落的過程中與層層小木塊碰撞,且等可能向左或向右滾下,最后掉入高爾頓板下方的某一球槽內(nèi).如圖所示的小木塊中,上面7層為高爾頓板,最下面一層為改造的高爾頓板,小球從通道口落下,第一次與第2層中間的小木塊碰撞,以的概率向左或向右滾下,依次經(jīng)過6次與小木塊碰撞,最后掉入編號(hào)為1,2…,7的球槽內(nèi).例如小球要掉入3號(hào)球槽,則在前5次碰撞中有2次向右3次向左滾到第6層的第3個(gè)空隙處,再以的概率向左滾下,或在前5次碰撞中有1次向右4次向左滾到第6層的第2個(gè)空隙處,再以的概率向右滾下.
(1)若進(jìn)行一次高爾頓板試驗(yàn),求小球落入第7層第6個(gè)空隙處的概率;
(2)小明同學(xué)在研究了高爾頓板后,利用該圖中的高爾頓板來到社團(tuán)文化節(jié)上進(jìn)行盈利性“抽獎(jiǎng)”活動(dòng),8元可以玩一次高爾頓板游戲,小球掉入X號(hào)球槽得到的獎(jiǎng)金為元,其中.
(i)求X的分布列:
(ii)高爾頓板游戲火爆進(jìn)行,很多同學(xué)參加了游戲,你覺得小明同學(xué)能盈利嗎?
【答案】(1);(2)(i)分布列見解析;(ii)能盈利.
【解析】
(1)記小球落入第7層第6個(gè)空隙處的事件為M,小球落入第7層第6個(gè)空隙處,需要在6次碰撞中有1次向左5次向右,由此能求出這個(gè)小球掉入第7層第6個(gè)空隙處的概率;
(2)X的取值為1,2,3,4,5,6,7,由此能求出X的分布列,進(jìn)而可求出的分布列和,從而能求出小明同學(xué)能盈利.
(1)記小球落入第7層第6個(gè)空隙處的事件為M,小球落入第7層第6個(gè)空隙處,需要在6次碰撞中有1次向左5次向右,
則;
(2)(i)由已知X的取值可為1,2,3,4,5,6,7.
;
;
;
,
∴X的分布列為
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P |
(ii)
的可能取值為0,5,10,15,
,
,
,
,
∴.
∴小明同學(xué)能盈利.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,過對(duì)角線作平面交棱于點(diǎn)E,交棱于點(diǎn)F,則:
①平面分正方體所得兩部分的體積相等;
②四邊形一定是平行四邊形;
③平面與平面不可能垂直;
④四邊形的面積有最大值.
其中所有正確結(jié)論的序號(hào)為( )
A.①④B.②③C.①②④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓:的焦距為,直線截圓:與橢圓所得的弦長(zhǎng)之比為,橢圓與軸正半軸的交點(diǎn)分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)(且)為橢圓上一點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線,分別交軸于點(diǎn),.試判斷是否為定值?若是求出該定值,若不是定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高爾頓板是英國生物統(tǒng)計(jì)學(xué)家高爾頓設(shè)計(jì)用來研究隨機(jī)現(xiàn)象的模型,在一塊木板上釘著若干排相互平行但相互錯(cuò)開的圓柱形小木塊,小木塊之間留有適當(dāng)?shù)目障蹲鳛橥ǖ,前面擋有一塊玻璃,讓一個(gè)小球從高爾頓板上方的通道口落下,小球在下落的過程中與層層小木塊碰撞,且等可能向左或向右滾下,最后掉入高爾頓板下方的某一球槽內(nèi).如圖所示的小木塊中,上面7層為高爾頓板,最下面一層為改造的高爾頓板,小球從通道口落下,第一次與第2層中間的小木塊碰撞,以的概率向左或向右滾下,依次經(jīng)過6次與小木塊碰撞,最后掉入編號(hào)為1,2…,7的球槽內(nèi).例如小球要掉入3號(hào)球槽,則在前5次碰撞中有2次向右3次向左滾到第6層的第3個(gè)空隙處,再以的概率向左滾下,或在前5次碰撞中有1次向右4次向左滾到第6層的第2個(gè)空隙處,再以的概率向右滾下.
(1)若進(jìn)行一次高爾頓板試驗(yàn),求小球落入第7層第6個(gè)空隙處的概率;
(2)小明同學(xué)在研究了高爾頓板后,利用該圖中的高爾頓板來到社團(tuán)文化節(jié)上進(jìn)行盈利性“抽獎(jiǎng)”活動(dòng),8元可以玩一次高爾頓板游戲,小球掉入X號(hào)球槽得到的獎(jiǎng)金為元,其中.
(i)求X的分布列:
(ii)高爾頓板游戲火爆進(jìn)行,很多同學(xué)參加了游戲,你覺得小明同學(xué)能盈利嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,E是AC的中點(diǎn),三棱錐的體積為
(1)求三棱錐的高;
(2)在線段AB上取一點(diǎn)D,當(dāng)D在什么位置時(shí),和的夾角大小為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對(duì)任意的,均為有理數(shù)),為一無理數(shù)列(即對(duì)任意的,為無理數(shù)).
(1)已知,并且對(duì)任意的恒成立,試求的通項(xiàng)公式.
(2)若為有理數(shù)列,試證明:對(duì)任意的,恒成立的充要條件為.
(3)已知,,對(duì)任意的,恒成立,試計(jì)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓過點(diǎn),焦點(diǎn),圓的直徑為.
(1)求橢圓及圓的方程;
(2)設(shè)直線與圓相切于第一象限內(nèi)的點(diǎn),直線與橢圓交于兩點(diǎn).若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知無窮數(shù)列的前項(xiàng)和為,若對(duì)于任意的正整數(shù),均有,則稱數(shù)列具有性質(zhì).
(1)判斷首項(xiàng)為,公比為的無窮等比數(shù)列是否具有性質(zhì),并說明理由;
(2)己知無窮數(shù)列具有性質(zhì),且任意相鄰四項(xiàng)之和都相等,求證:;
(3)己知,數(shù)列是等差數(shù)列,,若無窮數(shù)列具有性質(zhì),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com