如圖,在四棱錐中,底面是正方形,側(cè)面底面,若分別為、的中點.

(Ⅰ) 求證://平面
(Ⅱ) 求證:平面平面;

(1)根據(jù)題意,證明線面平行,關(guān)鍵是先證明線線平行,即
(2)對于面面垂直的證明,一般先證明線面垂直,,結(jié)合面面垂直的判定定理來得到。

解析試題分析:證明:(1)取AD中點G,PD中點H,連接FG,GH,HE,由題意:

  3分
//平面   7分
(2)平面底面,
,  11分
,平面平面  14分
考點:空間中平行和垂直的證明
點評:主要是考查了線面平行和面面垂直和判定定理的運用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,  AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點.

(I)證明:MC//平面PAD;
(II)求直線MC與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在正方體ABCD—A1B1C1D1中,E、F分別為棱BB1和DD1的中點.

(1)求證:平面B1FC//平面ADE;
(2)試在棱DC上取一點M,使平面ADE;
(3)設(shè)正方體的棱長為1,求四面體A­1—FEA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是一個直三棱柱(以A1B1C1為底面)被一平面
所截得到的幾何體,截面為ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且設(shè)點O是AB的中點。

(1)證明:OC∥平面A1B1C1;
(2)求異面直線OC與AlBl所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形中,,上的點,且,AC、BD交于點G.

(1)求證:
(2)求證;;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在多面體中,四邊形是邊長為2的正方形,平面平面,平面都與平面垂直,且、都是正三角形。

(1)求證:;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側(cè)面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.

(Ⅰ)求證:C1B⊥平面A1B1C1;
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點,求二面角A—EB1—A1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在圖一所示的平面圖形中,是邊長為 的等邊三角形,是分別以為底的全等的等腰三角形,現(xiàn)將該平面圖形分別沿折疊,使所在平面都與平面垂直,連接,得到圖二所示的幾何體,據(jù)此幾何體解決下面問題.

(1)求證:;
(2)當(dāng)時,求三棱錐的體積;
(3)在(2)的前提下,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案